Synthesis of TiO2/Al-MCM-41 Composites with Coal-Measure Kaolin and Performance in Its Photocatalysis
Qisheng Wu, Shuiping Li
.
DOI: 10.4236/msa.2011.21003   PDF    HTML     5,840 Downloads   11,659 Views   Citations

Abstract

TiO2/Al-MCM-41 composites with various titania content were prepared by loading titania into the mesopores of Al-MCM-41 mesoporous molecular sieve from coal-measure kaolin as silicon and aluminum source via general sol-gel method and incipient wetness impregnation method. TiO2/Al-MCM-41 composites were characterized by XRD, FT-IR and SEM, and the photocatalytic degradation of methyl orange solution under visible light irradiation. The results showed that the titania crystalline phase was anatase, and the particles size of TiO2 increase with TiO2 content. The photocatalytic degradation rates of all samples prepared by sol-gel method and incipient wetness impregnation have been become stable by visible light irradiation for 150 min, and the highest degradation rate was 83.7% and 76% respectively.

Share and Cite:

Q. Wu and S. Li, "Synthesis of TiO2/Al-MCM-41 Composites with Coal-Measure Kaolin and Performance in Its Photocatalysis," Materials Sciences and Applications, Vol. 2 No. 1, 2011, pp. 14-19. doi: 10.4236/msa.2011.21003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Z. Ma, B. Wang and Y. Wang, “Application of Molybdenum and Phosphate Modified Kaolin in Electrochemical Treatment of Paper mill Wastewater,” Journal of Hazard Materials, Vol. 145, No. 3, July 2007, pp. 417-423. doi:10.1016/j.jhazmat.2006.11.038
[2] T. Toya, Y. Kameshima, A. Nakajima and K. Okada, “Preparation and Properties of Glass-Ceramics from Kaolin Clay Refining Waste (Kira) and Paper Sludge Ash,” Ceramics International, Vol. 32, No. 7, 2006, pp. 789-796. doi:10.1016/j.ceramint.2005.06.008
[3] B. M. Steenari and K. K. Fedje, “Addition of Kaolin as Potassium Sorbent in the Combustion of Wood Fuel—Effects on Fly Ash Properties,” Fuel, Vol. 89, No. 8, August 2010, pp. 2026-2032.
[4] H. H. Liu, H. J. Zhao, X. H. Gao and J. T. Ma. “A Novel FCC Catalyst Synthesized via in Situ Overgrowth of NaY Zeolite on Kaolin Microspheres for Maximizing Propylene Yield,” Catalysis Today, Vol. 125, No. 3-4, July 2007, pp. 163-168. doi:10.1016/j.cattod.2007.05.005
[5] H. S. Wong and H. A. Razak, “Efficiency of Calcined Kaolin and Silica Fume as Cement Replacement Material for Strength Performance,” Cement and Concrete Research, Vol. 35, No. 4, April 2005, pp. 696-702. doi:10.1016/j.cemconres.2004.05.051
[6] H. F. Cheng, Q. F. Liu, J. Yang, Q. Zhang and R. L. Frost, “Thermal Behavior and Decomposition of Kaolinite-Potassium Acetate Intercalation Composite,” Thermochimica Acta, Vol. 503-504, No. 1-2, May 2010, pp. 16-20. doi:10.1016/j.tca.2010.02.014
[7] Q. S. Wu, S. P. Li and S. S. Su, “Preparation of 4A Zeolite Molecular Sieve from Xuzhou Coal-Measure Kaolin,” Chemical Industry Engineering and Progress, Vol. 28, No. 1, January 2009, pp. 130-134.
[8] Q. S, Wu, S. P. Li and S. S. Su, “Hydrothermal Synthesis of Mesoporous Materials from Coal-Measure Kaolin,” Chemical Industry Engineering and Progress, Vol. 28, No. 3, March 2009, pp. 458-461.
[9] S. P. Li and Q. S. Wu, “Preparation of Basic Molecular Sieve Materials from Coal-Measure Kaolin,” Journal of Materials Science and Engineering, Vol. 27, No. 2, April 2009, pp. 233-237.
[10] S. P. Li and Q. S. Wu, “Preparation on 5A Zeolite from Coal-Measure Kaolin and Adsorption Properties,” Environmental Engineering, Vol. 28, No. S1, September 2010, pp. 403-406.
[11] Q. S, Wu and S. P. Li, “The Effect of Surfactant/Silica and Hydrothermal Time on the Specific Surface Area of Mesoporous Materials from Coal-Measure Kaolin,” Journal of WuHan University of Technology (Materials Science Edition), Vol. 26, No, 1, February 2011, pp. 1-6.
[12] H. L. Xu, M. Wang, Q. F. Liu, D. L. Chen, H. L. Wang, K. J. Yang, H. D. Lu, R. Zhang and S. K. Guan. “Stability of the Compounds Obtained by Intercalating Potassium Acetate Molecules into Kaolinite from Coal Measures,” Journal of Physics and Chemistry of Solids, Vol. 72, No. 1, January 2010, pp. 24-28. doi:10.1016/j.jpcs.2010.10.019
[13] A. Tuel and L. G. Hubert-Ptalzgrat, “Nanometric Monodispersed Titanium Oxide Particles on Mesoporous Silica: Synthesis, Characterization, and Catalytic Activity in Oxidation Reactions in the Liquid Phase,” Journal of Catalysis, Vol. 217, No. 2, July 2003, pp. 343-353.
[14] N. B. Lihitkar, M. K. Abyaneh, V. Samuel, R. Pasricha, S. W. Gosavi and S. K. Kulkarni, “Titania Nanoparticles Synthesis in Mesoporous Molecular Sieve MCM-41,” Journal of Colloid Interface Science, Vol. 314, No. 1, October 2007, pp. 310-316. doi:10.1016/j.jcis.2007.05.069
[15] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, “Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism,” Nature, Vol. 359, No. 710-712, October 1992, pp. 710-712. doi:10.1038/359710a0
[16] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson and E. W. Sheppard, “A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates,” Journal of American Chemistry Society, Vol. 114, No. 27, December 1992, pp. 10834-10843.
[17] X. Zhang, F. Zhang and K. Y. Chan, “Synthesis of Titania-Silica Mixed Oxide Mesoporous Materials, Characterization and Photocatalytic Properties,” Applied Catalysis A: General, Vol. 284, No. 1-2, April 2005, pp. 193-198. doi:10.1016/j.apcata.2005.01.037
[18] X. X. Wang, W. H. Lian, X. Z. Fu, J. M. Basset and F. Lefebvre, “Structure, Preparation and Photocatalytic Activity of Titanium Oxides on MCM-41 Surface,” Journal of Catalysis, Vol. 238, No. 1, February 2006, pp. 13-20. doi:10.1016/j.jcat.2005.11.027
[19] L. J. Wang, D. Li, R. Wang, Yuan He, Q. Qi, Y. Wang and T. Zhang, “Study on Humidity Sensing Property Based on Li-Doped Mesoporous Silica MCM-41,” Sensors Actuators, B: Chemical, Vol. 133, No. 2, August 2008, pp. 622-627. doi:10.1016/j.snb.2008.03.028
[20] V. Mavrodinova, M. Popova, V. Valchev, R. Nickolov and Ch. Minchev, “Beta Zeolite Colloidal Nanocrystals Supported on Mesoporous MCM-41,” Journal of Colloid Interface Science, Vol. 286, No. 1, June 2005, pp. 268-273. doi:10.1016/j.jcis.2005.01.006
[21] H. Y. Chen, H. X. Xi, X. Y. Cai and Y. Qian, “Experimental and Molecular Simulation Studies of A ZSM-5-MCM-41 Micro-Mesoporous Molecular Sieve,” Microporous and Mesoporous Materials, Vol. 118, No. 1-3, February 2009, pp. 396-402. doi:10.1016/j.micromeso.2008.09.020
[22] Z. J. Li, B. Hou, Y. Xu, D. Wu and Y. H. Sun, “Hydrothermal Synthesis, Characterization, and Photocatalytic Performance of Silica-Modified Titanium Dioxide Nanoparticles,” Journal of Colloid and Interface Science, Vol. 288, No. 1, August 2005, pp. 149-154. doi:10.1016/j.jcis.2005.02.082
[23] H. M. Yang, Y. H. Deng and C. F. Du, “Synthesis and Optical Properties of Mesoporous MCM-41 Containing Doped TiO2 Nanoparticles,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 339, No. 1-3, May 2009, pp. 111-117. doi:10.1016/j.colsurfa.2009.02.005
[24] M. S. Sadjadi, N. Farhadyar and K. Zare, “Improvement of the Alkaline Protease Properties via Immobilization on the TiO2 Nanoparticles Supported by Mesoporous MCM-41,” Superlattices and Microstructures, Vol. 46, No. 1-2, July-August 2009, pp. 77-83. doi:10.1016/j.spmi.2008.10.022
[25] T. Kawahara, Y. Konishi, H. Tada, N. Tohge, J. J. Nishii and S. Ito, “A Patterned TiO2 (Anatase)/TiO2 (Rutile) Bilayer-Type Photocatalyst: Effect of the Anatase/Rutile Junction on the Photocatalytic Activity,” Angewandte Chemie (International Edition), Vol. 41, No. 15, August 2002, pp. 2811-2813. doi:10.1002/1521-3773(20020802)41:15<2811::AID-ANIE2811>3.0.CO;2-#
[26] W. Zhang, L. D. Zou and L. Z. Wang, “Photocatalytic TiO2/Adsorbent Nanocomposites Prepared via Wet Chemical Impregnation for Wastewater Treatment: A Review”. Appllied Catalysis, A: General, Vol. 371, No. 1-2, December 2009, pp. 1-9.
[27] U. G. Akpan and B. H. Hameed, “Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2-Based Photocatalysts: A Review,” Journal of Hazardous Materials, Vol. 170, No. 2-3, October 2009, pp. 520-529. doi:10.1016/j.jhazmat.2009.05.039
[28] Y. Xie, Y. Z. Li and X. J. Zhao, “Low-Temperature Preparation and Visible-Light-Induced Catalytic Activity of Anatase F–N-Codoped TiO2,” Journal of Molecular Catalysis A: Chemical, Vol. 277, No. 1-2, November 2007, pp. 119-126. doi:10.1016/j.molcata.2007.07.031
[29] S. Yuan, Q. R. Sheng, J. L. Zhang, F. Chen, M. Anpo and Q. H. Zhang, “Synthesis of La3+ Doped Mesoporous Titania with Highly Crystallized Walls,” Microporous and Mesoporous Materials, Vol. 79, No. 1-3, April 2005, pp. 93-99. doi:10.1016/j.micromeso.2004.10.028
[30] S. Yuan, Q. R. Sheng, J. L. Zhang, H. Yamashita and D. N. He, “Synthesis of Thermally Stable Mesoporous TiO2 and Investigation of Its Photocatalytic Activity,” Microporous and Mesoporous Materials, Vol. 110, No. 2-3, April 2008, pp. 501-507. doi:10.1016/j.micromeso.2007.06.039
[31] X. X. Fan, X. Y. Chen, S. P. Zhu, Z. S. Li, T. Yu, J. H. Ye and Z. G. Zou, “The Structural, Physical and Photocatalytic Properties of the Mesoporous Cr-Doped TiO2,” Journal of Molecular Catalysis A: Chemical, Vol. 284, No. 1-2, April 2008, pp. 155-160. doi:10.1016/j.molcata.2008.01.005
[32] Y. Xie, X. J. Zhao, Y. Z. Li, Q. N. Zhao, X. D. Zhou and Q. H. Yuan, “CTAB-Assisted Synthesis of Mesoporous F–N-Codoped TiO2 Powders with High Visible-Light-Driven Catalytic Activity and Adsorption Capacity”. Journal of Solid State Chemistry, Vol. 181, No. 1, August 2008, pp. 1936-1942. doi:10.1016/j.jssc.2008.04.021
[33] J. H. Huang, X. C. Wang, Y. D. Hou, X. F. Chen, L. Wu, X. X. Wang and X. Z. Fu, “Synthesis of Functionalized Mesoporous TiO2 Molecular Sieves and Their Application in Photocatalysis,” Microporous and Mesoporous Materials, Vol. 110, No. 8, April 2008, pp. 543-552. doi:10.1016/j.micromeso.2007.06.055
[34] Y. Xiao, L. Q. Dang, L. Z. An, S. Y. Bai and Z. B. Lei, “Photocatalytic Degradation of Rhodamine B and Phenol by TiO2 Loaded on Mesoporous Graphitic Carbon,” Chinese Journal of Catalysis, Vol. 29, No. 2-3, January 2008, pp. 31-36. doi:10.1016/S1872-2067(08)60014-5

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.