Adaptation in polymerase basic protein 1 family from influenza A virus to climate change

Abstract

Global climate changes affect the functioning of ecosystems, in particular host-pathogen interactions, with major consequences in health ecology, however, it is less addressed how the change in global temperature affects the protein family of influenza virus. In this study, we studied the adaptation of polymerase basic protein 1 (PB1) family from influenza A virus to temperature change. 3841 PB1 proteins sampled from 1956-2011 were quantified by the amino-acid pair predictability and then compared their general changes with the temperature changes (Had-CRUT3v and CRUTEM4v data sets) of corresponding years on a 5? by 5? grid-box basis. Also, point-to-point comparisons were conducted from 1956 to 1998 in all and different species. The results showed that both changes in the temperature and unpredictable portion of PB1 proteins had similar trends from 1956 to 2011, which provides the evidence of virus adaptation at protein level to climate change.

Share and Cite:

Yan, S. and Wu, G. (2012) Adaptation in polymerase basic protein 1 family from influenza A virus to climate change. Health, 4, 968-973. doi: 10.4236/health.2012.430148.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F., De Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Phillips, O.L. and Williams, S.E. (2004) Extinction risk from climate change. Nature, 427, 145-148. doi:10.1038/nature02121
[2] Sears, M.W. and Angilletta, M.J. Jr. (2011) Introduction to the symposium: Responses of organisms to climate change: A synthetic approach to the role of thermal adaptation. Integrative and Comparative Biology, 51, 662-665. doi:10.1093/icb/icr113
[3] Shaw, R.G. and Etterson, J.R. (2012) Rapid climate change and the rate of adaptation: Insight from experimental quantitative genetics. New Phytologist, 195, 752-765. doi:10.1111/j.1469-8137.2012.04230.x
[4] Anderson, J.T., Inouye, D.W., McKinney, A.M., Colautti, R.I. and Mitchell-Olds, T. (2012) Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proceedings of Biological Science, 279, 3843-3852. doi:10.1098/rspb.2012.1051
[5] de La Rocque, S., Rioux, J.A. and Slingenbergh, J. (2008) Climate change: Effects on animal disease systems and implications for surveillance and control. Review on Science and Technology, 27, 339-354.
[6] Gould, E.A. and Higgs, S. (2009) Impact of climate change and other factors on emerging arbovirus diseases. Transaction of Royal Society of Tropic Medicine and Hygiene, 103, 109-121.
[7] Gilbert, M., Slingenbergh, J. and Xiao, X. (2008) Climate change and avian influenza. Review on Science and Technology, 27, 459-466.
[8] Yan, S. and Wu, G. (2009) What these trends suggest? American Journal of Applied Sciences, 6, 1116-1121. doi:10.3844/ajassp.2009.1116.1121
[9] Yan, S. and Wu, G. (2009) Trends in global warming and evolution of polymerase basic protein 2 family from influenza A virus. Journal of Biomedical Science and Engineering, 2, 458-464.
[10] Yan, S. and Wu, G. (2009) Trends in global warming and evolution of matrix protein 2 family from influenza A virus. Interdisciplinary Science: Computational Life Science, 1, 272-279. doi:10.1007/s12539-009-0053-6
[11] Yan, S.M., Zuo, W.P., Zhu, Q.X., Huang, Y.Y., Pan, L.X. and Wu, G. (2010) Trends in global warming and evolution of neuraminidases from influenza A viruses since 1918. Guangxi Sciences, 17, 80-84.
[12] Yan, S. and Wu, G. (2010) Trends in global warming and evolution of nucleoproteins from influenza A viruses since 1918. Transboundary and Emerging Diseases, 57, 404-413. doi:10.1111/j.1865-1682.2010.01164.x
[13] Yan, S. and Wu, G. (2011) Evidence for possible impact of global warming on evolution of hemagglutinins from influenza A virus. Biomedical and Environmental Sciences, 24, 62-67.
[14] Engelhardt, O.G. and Fodor, E. (2006) Functional association between viral and cellular transcription during influenza virus infection. Review on Medical Virology, 16, 329-345. doi:10.1002/rmv.512
[15] Brower-Sinning, R., Carter, D.M., Crevar, C.J., Ghedin, E., Ross, T.M. and Benos, P.V. (2009) The role of RNA folding free energy in the evolution of the polymerase genes of the influenza A virus. Genome Biology, 10, R18. doi:10.1186/gb-2009-10-2-r18
[16] Watanabe, T., Watanabe, S., Shinya, K., Kim, J.H., Hatta, M. and Kawaoka, Y. (2009) Viral RNA polymerase complex promotes optimal growth of 1918 virus in the lower respiratory tract of ferrets. Proceedings of National Academy of Sciences of United States of America, 106, 588-592. doi:10.1073/pnas.0806959106
[17] Assarsson, E., Bui, H.H., Sidney, J., Zhang, Q., Glenn, J., Oseroff, C., Mbawuike, I.N., Alexander, Newman, M.J., Grey, H. and Sette, A. (2008) Immunomic analysis of the repertoire of T-cell specificities for influenza A virus in humans. Journal of Virology, 82, 12241-12251. doi:10.1128/JVI.01563-08
[18] Climatic Research Unit. (2012) http://www.cru.uea.ac.uk/cru/data/temperature
[19] Rayner, N.A., Brohan, P., Parker, D.E., Folland, C.K., Kennedy, J.J., Vanicek, M., Ansell, T. and Tett, S.F.B. (2006) Improved analyses of changes and uncertainties in marine temperature measured in situ since the mid nineteenth century: The HadSST2 dataset. Journal of Climate, 19, 446-469. doi:10.1175/JCLI3637.1
[20] New, M. Hulme M. and Jones, P. (2000) Representing twentieth-century space-time climate variability. Part II: Development of 1901-1996 monthly grids of terrestrial surface climate. Journal of Climate, 13, 2217-2238. doi:10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2
[21] Influenza virus resources. (2012) http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/multiple.cgi
[22] Wu, G. and Yan, S. (2008) Lecture notes on computational mutation. Nova Science Publishers, New York.
[23] Get Lat Lon. (2012) http://www.getlatlon.com
[24] Pielak, R.M., Oxenoid, K. and Chou, J.J. (2011) Structural investigation of rimantadine inhibition of the AM2-BM2 chimera channel of influenza viruses. Structure, 19, 1655-1663. doi:10.1016/j.str.2011.09.003
[25] Berardi, M.J., Shih, W.M., Harrison, S.C. and Chou, J.J. (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature, 476, 109-113. doi:10.1038/nature10257
[26] Du, Q.S., Wei, H., Huang, R.B. and Chou, K.C. (2011) Progress in structure-based drug design against influenza A virus. Expert Opinion, 6, 619-631. doi:10.1517/17460441.2011.571671
[27] Li, X.B., Wang, S.Q., Xu, W.R., Wang, R.L. and Chou, K.C. (2011) Novel inhibitor design for hemagglutinin against H1N1 influenza virus by core hopping method. PLoS One, 6, e28111. doi:10.1371/journal.pone.0028111
[28] Wang, S.Q., Cheng, X.C., Dong, W.L., Wang, R.L. and Chou, K.C. (2010). Three new powerful Oseltamivir derivatives for inhibiting the neuraminidase of influenza virus. Biochemistry Biophysics Research Communication, 401, 188-191. doi:10.1016/j.bbrc.2010.09.020
[29] Garamszegi, L.Z. and M?ller, A.P. (2007) Prevalence of avian influenza and host ecology. Proceedings of Biological Science, 274, 2003-2012.
[30] Jahangir, A., Watanabe, Y., Chinen, O., Yamazaki, S., Sakai, K., Okamura, M., Nakamura, M. and Takehara, K. (2008) Surveillance of avian influenza viruses in Northern pintails (Anas acuta) in Tohoku District. Japanese Avian Disease, 52, 49-53. doi:10.1637/8035-062507-Reg
[31] Louchart, A. (2008) Emergence of long distance bird migrations: A new model integrating global climate changes. Naturwissenschaften, 95, 1109-1119. doi:10.1007/s00114-008-0435-3

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.