Evaluation of genetic diversity and conservation priorities for Egyptian chickens

Abstract

In this study, 21 microsatellite markers were used to genotype 196 Egyptian local chickens obtained from Fayoumi (n = 35), Dandarawy (n = 30), Baladi (n = 29), Sinai (n = 30), El-Salam (n = 36), and Golden Montazah (n = 36) strains. The results were compared to two pure commercial chicken populations reared in Japan-White Leghorn (n = 42) and Rhode Island Red (n = 43). A total of 162 alleles were observed, with an average of 7.7 alleles per locus. The average expected heterozygosity for the Egyptian chickens was 0.595. The closest pairwise Nei’s genetic distance was recorded between Sinai and Golden Montazah (0.038) and the smallest pairwise FST value (0.006) was observed between Baladi and Sinai. The most probable structure clustering of the eight studied populations was at K = 6. Baladi, Sinai and Golden Montazah strains were clustered together forming admixed mosaic cluster. Dandarawy ranked firstly and contributed the most to aggregate genetic diversity based on two prioritization methods. The information resulting from this study may be used as an initial guide to design further investigations for development of sustainable genetic improvement and conservation programs for the Egyptian chicken genetic resources.

Share and Cite:

Ramadan, S. , Kayang, B. , Inoue, E. , Nirasawa, K. , Hayakawa, H. , Ito, S. and Inoue-Murayama, M. (2012) Evaluation of genetic diversity and conservation priorities for Egyptian chickens. Open Journal of Animal Sciences, 2, 183-190. doi: 10.4236/ojas.2012.23025.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Frankham, R. (1995) Conservation genetics. Annual Review of Genetics, 29, 305-327. doi:10.1146/-annurev.ge.29.120195.001513
[2] Barker, J.S. (2001) Conservation and management of genetic diversity: A domestic animal perspective. Canadian Journal of Forest Re-search, 31, 588-595. doi:10.1139/x00-180
[3] FAO (2007) The State of the World’s Animal Genetic Resources for Food and Agriculture. FAO, Rome. http://www.fao.org/docrep/010/a1250e/a1250e00.htm
[4] Bennewitz, J., Eding, H., Ruane, J. and Simianer, H. (2007) Selec-tion of breeds for conservation. In: K. Oldenbrook, Ed., Utilization and Conservation of Farm Animal Genetic Resources, Wageningen Academic Publishers, Wageningen, 131-146.
[5] Ruane, J. (2000) A framework for prioritizing domestic animal breeds for Conservation purposes at the national level: A Norwegian case study. Conservation Biology, 14, 1385-1393. doi:10.1046/j.1523-1739.2000.99276.x
[6] Blackburn, H. (2006) The National Animal Germplasm Program: Challenge and opportunities for poultry genetic resources. Poultry Science, 85, 210-215.
[7] Weigend, S., Vef, E., Wesch, G., Meckenstock, E., Seibold, R. and Ellendorff, F. (1995) Concept for conserving genetic resources in poultry in Germany. Archiv für Geflügelkunde, 59, 327-334.
[8] Hosny, F.A. (2006) The structure and importance of the commercial and village based poultry systems in Egypt. In: Food and Agriculture Organization of the United Nations, Ed., Poultry Sector Country Review, 1-39.
[9] Abd El-Gawad, E.M., Balat, M.M., Abou- El- Ella, N.Y., Ali, M.M. and Omran, Kh.M. (1983) “El-Salam” a new locally developed strain of chickens. Agricultural Research Revolution, 61, 147-157.
[10] Mahmoud, T.H., Sayed, I.F. and Madkour, Y. H. (1974) “The Golden Montazah” a new variety of chickens. Agricultural Research Revolution Cairo, 52, 97-105.
[11] Pinard-Van Der Laan, M.H., Monvoisin, J.L., Pery, P., Hamet, N. and Thomas, M. (1998) Comparison of outbred lines of chickens for resistance to experimental infection with coccidiosis (Eimeria tenella). Poultry Science, 77, 185-191.
[12] Tixier-Boichard, M., Bordas, A. and Rognon, X. (2009) Characterisation and monitoring of poultry genetic resources. World’s Poultry Science Journal, 65, 272-285. doi:10.1017/S0043933909000233
[13] Arad, Z., Marder, J. and Soller, M. (1981) Effect of gradual acclimation to temper-atures up to 44?C on productive performance of the desert Bedouin fowl, the commercial White Leghorn and the two reciprocal crossbreds. British Poultry Science, 22, 511-520. doi:10.1080/00071688108447918
[14] Roushdy, Kh., Zein El-Dein, A., Fathi, M.M., Ali, U.M. and Assy, H.M. (2008) Microsatellite genetic differentiation analysis of two local chicken breeds compared with foreign Hyline strain. International Journal of Poultry Science, 7, 1045-1053. doi:10.3923/ijps.2008.1045.1053
[15] Eltanany, M., Philipp, U., Weigend, S. and Distl, O. (2011) Genetic diversity of ten Egyptian chicken strains using 29 microsatellite markers. Animal Genetics, 42, 666-669. doi:10.1111/j.1365-2052.2011.02185.x
[16] Peakall, R. and Smouse, P.E. (2006) GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288- 295. doi:10.1111/j.1471-8286.2005.01155.x
[17] Gutiérrez, J.P., Royo, L.J., álvarez, I. and Goyache, F. (2005) Molkin v2.0: A computer program for genetic analysis of populations using molecular coancestry information. Journal of Heredity, 96, 718-721. doi:10. 1093/jhered/esi118
[18] Weir, B.S. and Cockerham, C.C. (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370. doi:10.2307/ 2408641
[19] Raymond, M. and Rousset, F. (1995) GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248-249.
[20] Nei, M., Tajima, F. and Tateno, Y. (1983) Accuracy of estimated phylo-genetic trees from molecular data. II. Gene frequency data. Journal of Molecular Evolution, 19, 153-170. doi:10.1007/BF02300753
[21] Saitou, N. and Nei, M. (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425.
[22] Pritchard, J.K., Stephens, M. and Donnelly, P. (2000) Inference of population structure using multilocus gen-otype data. Genetics, 155, 945-959.
[23] Jakobsson, M. and Rosenberg, N.A. (2007) CLUMPP: A cluster matching and permutation program for dealing with label switching and mul-timodality in analysis of population structure. Bioinformatics, 23, 1801-1806. doi:10.1093/bioinformatics/btm233
[24] Rosenberg, N.A. (2004) DISTRUCT: A program for the graphical display of population structure. Molecular Ecology Notes, 4, 137-138. doi:10.1046/j.1 471 -8286.2003.00566.x
[25] Evanno, G., Regnaut, S. and Goudet, J. (2005) Detecting the number of clusters of individuals using the software STRUCTURE, a simulation study. Molecular Ecology, 14, 2611-2620. doi:10.1111/j.1365-294X. 2005.02553.x
[26] Li, H.F., Han, W., Zhu, Y.F., Shu, J.T., Zhang, X.Y. and Chen, K.W. (2009) Anal-ysis of genetic structure and relationship among nine indigenous Chinese chicken populations by the Structure program. Journal of Genetics, 88, 197-203. doi:10.1007/s12041-009-0028-8
[27] Ollivier, L. and Foulley, J.L. (2005) Aggregate diversity: new approach combining within and between-breed genetic diversity. Livestock Production Science, 95, 247-254. doi:10.1016/j.livprodsci.2005.01.005
[28] Weitzman, M.L. (1993) What to preserve? An application of diversity theory to Crane conservation. Quarterly Journal of Economics, 108, 157-183. doi: 10.2307/2118499
[29] Derban, S., Foulley, J.L. and Ollivier, L. (2002) WEITZPRO: A software for analyzing genetic diversity. Institut National de la Recherche Agronomique, Paris. http://www23sgqa.jouy.inra.fr/article.php3?id_article=3
[30] Petit, R.J., El Mousadik, A. and Pons, O. (1998) Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 12, 844-855. doi:10.1046/j.1523-1739.1998.96489.x
[31] Caballero, A. and Toro, M.A. (2002) Analysis of genetic diversity for the man-agement of conserved subdivided populations. Conservation Genetics, 3, 289-299. doi:10.1023/A:1019956205473
[32] Muchadeyi, F.C., Eding, H. Wollny, C.B., Groeneveld, E., Makuza, S.M., Shamseldin, R., Simianer, H. and Weigend, S. (2007) Absence of population substructuring in Zimbabwe chicken ecotypes inferred using microsatellite analysis. Animal Genetics, 38, 332-339. doi:10.1111/j.1365-2052.2007.01606.x
[33] Simon, D.L. and Buchenauer, D. (Eds.) (1993) Genetic diversity of European livestock breeds. Results of Monitoring by the EAAP Working Group on Animal Genetic Resources; EAAP Animal Genetic Data Bank, Institute of Animal Breeding and Genetics, School of Veterinary Medicine, Hannover, EAAP Publication, No. 66, Wageningen Pers, Wageningen, 591 p.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.