Capacitive Properties of Mesoporous Mn-Co Oxide Derived from a Mixed Oxalate

Abstract

A mesoporous Mn-Co oxide for supercapacitors was derived from a mixed oxalate Mn0.8Co0.2C2O4·nH2O, which was synthesized by a solid-state coordination reaction at room temperature. The synthesized mixed Mn-Co oxalate was decomposed in air at 250°C, resulting in a tetragonal spinel Mn-Co oxide with a primary particle size less than 100 nm. The obtained Mn-Co oxide presents a mesoporous texture with a specific surface area of 120 m2·g﹣1. Electrochemical properties of the Mn-Co oxide electrode were investigated by cyclic voltammetry and galvanostatic charge/discharge in 6 mol·L﹣1 KOH electrolyte. The Mn-Co oxide electrode delivered specific capacitances of 383 and 225 F·g﹣1 at scan rates of 2 and 50 mV·s﹣1, respectively. Subjected to 500 cycles at a current density of 1.34 A·g﹣1, the symmetrical Mn-Co oxide capacitor showed specific capacitance of 179 F·g﹣1, still retaining ~85% of its initial capacitance. The obtained Mn-Co oxide material showed good capacitive performance, which was promising for supercapacitor applications.

Share and Cite:

Y. Yan, B. Wu, C. Zheng and D. Fang, "Capacitive Properties of Mesoporous Mn-Co Oxide Derived from a Mixed Oxalate," Materials Sciences and Applications, Vol. 3 No. 6, 2012, pp. 377-383. doi: 10.4236/msa.2012.36054.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. E. Conway, “Electrochemical Supercapacitors,” Kluwer Academic Publishers, New York, 1999
[2] A. Burke, “Ultracapacitors: why, how, and where is the technology,” Journal of Power Sources, Vol. 91, No. 1, 2000, pp. 37-50. doi:10.1016/S0378-7753(00)00485-7
[3] J. R. Miller and A. Burke, “Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications,” Electrochemical Society Interface, Vol. 17, No. 1, 2008, pp. 53-57.
[4] Y. Liu, K. X. Li, J. L. Wang, G. H. Sun and C. G. Sun, “Preparation of Spherical Activated Carbon with Hierarchical Porous Texture,” Journal of Materials Science, Vol. 44, No. 17, 2009, pp. 4750-4753. doi:10.1007/s10853-009-3710-6
[5] A.G. Pandolfo and A.F. Hollenkamp, “Carbon Propertites and Their Role in Supercapacitors,” Journal of Power Sources, Vol. 157, No. 1, 2006, pp. 11-27. doi:10.1016/j.jpowsour.2006.02.065
[6] T. Nathan, A. Aziz, A. F. Noor and S. R. S. Prabaharan, “Nanostructured NiO for Electrochemical Capacitors: Synthiesis and Electrochemical Properties,” Journal of Solid State Electrochemistry, Vol. 12, No. 7-8, 2007, pp. 1003-1009. doi:10.1007/s10008-007-0465-3
[7] J. Cheng, G. P. Cao and Y. S. Yang, “Characterization of Sol-Gel-Derived NiOx Xerogels Supercapacitors,” Journal of Power Sources, Vol. 159, No. 1, 2006, pp. 734-731. doi:10.1016/j.jpowsour.2005.07.095
[8] D. Bélanger, T. Brousse and J. W. Long, “Manganese Oxides: Battery Materials Make the Leap to Electrochemical Capacitors,” Electrochemical Society Interface, Vol. 17, No. 1, 2008, pp. 47-52.
[9] D.K. Bhat and M.S. Kumar, “N and P Doped Poly(3,4Ethylenedioxythiophene) Electrode Materials for Symmetric Redox Supercapacitors,” Journal of Materials Science, Vol. 42, No. 19, 2008, pp. 8158-8162 doi:10.1007/s10853-007-1704-9
[10] H. Guan, L.Z. Fan, H.C. Zhang and X.H. Qu, “Polyaniline Nanofiber Obtained by Interfacial Polymerization for High-Rate Supercapacitors,” Electrochimica Acta, Vol. 56, No. 2, 2010, pp. 964-968. doi:10.1016/j.electacta.2010.09.078
[11] J. P. Zheng, “Ruthenium Oxide-Carbon Composite Electrodes for Electrochemical Capacitors,” Electrochemical and Solid-State Letters, Vol. 2, No. 8, 1999, pp. 359-361 doi:10.1149/1.1390837
[12] E. H. Liu, R. Ding, X. Y. Meng, S. T. Tan and J. C. Zhou, “Potentiodynamical Deposition of Nanosized Manganese Oxides as High Capacitance Electrochemical Capacitors,” Journal of Materials Science Materials in Electronics, Vol. 18, No. 12, 2007, pp. 1179-1182 doi:10.1007/s10854-007-9369-3
[13] R. N. Reddy, R. G. Reddy, “Synthesis and Electrochemical Characterization of Amorphous MnO2 Electrochemical Capacitor Electrode Material,” Journal of Power Sources, Vol. 132, No. 1-2, 2004, pp. 315-320 doi:10.1016/j.jpowsour.2003.12.054
[14] T. Brousse, M. Toupin, R. Dugas, L. Athou?l, O. Crosnier and D. Bélange, “Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors,” Journal of the Electrochemical Society, Vol. 153, No. 12, 2006, pp. A2171-A2180. doi:10.1149/1.2352197
[15] L. Athouel, F. Moser, R. Dugas, O. Crosnier, D. Bélanger and T. Brousse, “Variation of the MnO2 Birnessite Structure upon Charge/Discharge in an Electrochemical Supercapacitor Electrode in Aqueous Na2SO4 Electrolyte,” Journal of Physical Chemistry, Vol. 112, No. 18, 2008, pp. 7270-7277. doi:10.1021/jp0773029
[16] F. B. Zhang, Y. K. Zhou and H. L. Li, “Nanocrystalline NiO as an Electrode Material for Electrochemical Capacitor,” Materials Chemistry and Physics, Vol. 83, No. 2-3, 2004, pp. 260-264. doi:10.1016/j.matchemphys.2003.09.046
[17] X. M. Liu, X. G. Zhang and S. Y. Fu, “Preparation of Urchinlike NiO Nanostructures and Their Electrochemical Capacitive Behaviors,” Materials Research Bulletin, Vol. 41, No. 3, 2006, pp. 620-627. doi:10.1016/j.materresbull.2005.09.006
[18] T. Y. Wei, C. H. Chen, K. H. Chang, S. Y. Lu and C. C. Hu, “Cobalt Oxide Aerogels of Ideal Supercapacitive Properties Prepared with an Epoxide Synthetic Route,” Chemistry of Materials, Vol. 21, No. 14, 2009, pp. 3228-3233. doi:10.1021/cm9007365
[19] Y.Y. Gao, S.L. Chen, D.X. Cao, G.L. Wang and J.L. Yin, “Electrochemical Capacitance of Co3O4 Nanowire Arrays Supported on Nickel Foam,” Journal of Power Sources, Vol. 195, No. 6, 2010, pp. 1757-1760. doi:10.1016/j.jpowsour.2009.09.048
[20] E. H. Liu, W. Li, J. Li, X. Y. Meng and S. T. Tan, “Preparation and Characterization of Nanostructured NiO/MnO2 Composite Electrode for Electrochemical Supercapacitors,” Materials Research Bulletin, Vol. 44, No. 5, 2009, pp. 1122-1126. doi:10.1016/j.materresbull.2008.10.003
[21] H. Kim and B. N. Popov, “Synthesis and Characterization of MnO2 Based Mixed Oxides as Supercapacitors,” Journal of The Electrochemical Society, Vol. 150, No. 3, 2003, pp. D56-D62. doi:10.1149/1.1541675
[22] M. Nakayama, A. Tanaka, Y. Sato, T. Tonosaki and K. Ogura. “Electrodeposition of Manganese and Molybdenum Mixed Oxide Thin Films and Their Charge Storage Properties,” Langmuir, Vol. 21, No. 13, 2005, pp. 5907-5913. doi:10.1021/la050114u
[23] X. Y. Xie, W. W. Liu, L. Y. Zhao and C. D. Huang, “Structural and Electrochemical Behavior of Mn-V Oxide Synthesized by a Novel Precipitation Method,” Journal of Solid State Electrochemistry, Vol. 14, No. 1, pp. 1585-1594. doi:10.1007/s10008-009-0987-y
[24] P. Y. Chuang and C. C. Hu, “The Electrochemical Characteristics of Binary Manganese-Cobalt Oxides Prepared by Anodic Deposition,” Materials Chemistry and Physics, Vol. 92, No. 1, pp. 138-145. doi:10.1016/j.matchemphys.2005.01.004
[25] G. Y. Zhao, C. L. Xu and H. L. Li, “Highly Ordered Cobalt-Manganese Oxide (CMO) Nanowire Array Thin Film on Ti/Si Substrate as an Electrode for Electrochemical Capacitor,” Journal of Power Sources, Vol. 163, No. 2, 2007, pp. 1132-1136. doi:10.1016/j.jpowsour.2006.09.085
[26] E. Machefauxa, T. Brousseb, D. Bélangerc and D. Guyomard, “Supercapacitor Behavior of New Substituted Manganese Dioxides,” Journal of Power Sources, Vol. 165, No. 2, 2007, pp. 651-655 doi:10.1016/j.jpowsour.2006.10.060
[27] D. L. Fang, Z. B. Wang, P. H. Yang, W. Liu and C. S. Chen, “Preparation of Ultra-Fine Nickel Manganite Powders and Ceramics by a Solid-State Coordination Reaction,” Journal of the American Ceramic Society, Vol. 89, No. 1, 2006, pp. 230-235. doi:10.1111/j.1551-2916.2005.00666.x
[28] D. L Fang, C. S Chena and A. J. A. Winnubstc, “Preparation and Electrical Properties of FexCu0.10Ni0.66Mn2.24?xO4 (0 ≤ x ≤ 0.90) NTC Ceramics,” Journal of Alloys and Compounds, Vol. 454, No. 1-2, 2008, pp. 286-291. doi:10.1016/j.jallcom.2006.12.059
[29] F. Rouquerol, J. Rouquerol and K. Sing, “Adsorption by Powers and Porous Solids: Principles Methodology and Applications,” Academic Press, San Diego, 1999.
[30] T. Sreethawong, S. Chavadej, S. Ngamsinlapasathian and S. Yoshikawa, “A Modified Sol-Gel Process-Derived Highly Nanocrystalline Mesoporous NiO with Narrow Pore Size Distribution,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 296, No. 1-3, 2007, pp. 222-229. doi:10.1016/j.colsurfa.2006.09.048
[31] E. Raymundo-Pinero, V. Khomenko and E. Frackowiak, “Performance of Manganese Oxide/CNTs Composites as Electrode Materials for Electrochemical Capacitors,” Journal of The Electrochemical Society, Vol. 152, No. 1, 2005, pp. 229-235. doi:10.1149/1.1834913
[32] D. L. Fang, B. C. Wu, A. Q. Mao, Y. Yan and C. H. Zheng, “Supercapacitive Properties of Ultra-Fine MnO2 Prepared by a Solid-State Coordination Reaction,” Journal of Alloys and Compounds, Vol. 507, No. 2, 2010, pp. 526-530. doi:10.1016/j.jallcom.2010.08.010
[33] M. Toupin, T. Brousse and D. Bélanger, “The Influence of Microstructure on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide,” Chemistry of Materials, Vol. 14, No. 9, 2002, pp. 3946-3952. doi:10.1021/cm020408q
[34] S. J. Bao, B. L. He, Y. Y. Liang, W. J. Zhou and H. L. Li. “Synthesis and Electrochemical Characterization of Amorphous MnO2 for Electrochemical Capacitor,” Materials Science and Engineering: A, Vol. 397, No. 1-2, 2005, pp. 305-309. doi:10.1016/j.msea.2005.02.058
[35] C. H. Zheng and D. L. Fang, “Preparation of Ultra-Fine Cobalt-Nickel Manganite Powders and Ceramics Derived From Mixed Oxalate,” Materials Research Bulletin, Vol. 43, No. 7, 2008, pp. 1877-1882. doi:10.1016/j.materresbull.2007.06.061
[36] J. Li, X. Y. Wang, Q. H. Huang, S. Gamboa and P. J. Sebastian, “A New Type of MnO2?xH2O/CRF Composite Electrode for Supercapacitors,” Journal of Power Sources, Vol. 160, No. 2, 2006, pp. 1501-1505. doi:10.1016/j.jpowsour.2006.02.045

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.