[1]
|
Culp, M.B., Soerjomataram, I., Efstathiou, J.A., Bray, F. and Jemal, A. (2020) Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates. European Urology, 77, 38-52. https://doi.org/10.1016/j.eururo.2019.08.005
|
[2]
|
Horoszewicz, J.S., Kawinski, E. and Murphy, G.P. (1987) Monoclonal Antibodies to a New Antigenic Marker in Epithelial Prostatic Cells and Serum of Prostatic Cancer Patients. Anticancer Research, 7, 927-935.
|
[3]
|
Bostwick, D.G., Pacelli, A., Blute, M., Roche, P. and Murphy, G.P. (1998) Prostate Specific Membrane Antigen Expression in Prostatic Intraepithelial Neoplasia and Adenocarcinoma. Cancer, 82, 2256-2261. https://doi.org/10.1002/(sici)1097-0142(19980601)82:11<2256::aid-cncr22>3.0.co;2-s
|
[4]
|
Silver, D.A., Pellicer, I., Fair, W.R., Heston, W.D. and Cordon-Cardo, C. (1997) Prostate-Specific Membrane Antigen Expression in Normal and Malignant Human Tissues. Clinical Cancer Research, 3, 81-85.
|
[5]
|
Pinto, J.T., Suffoletto, B.P., Berzin, T.M., Qiao, C.H., Lin, S., Tong, W.P., et al. (1996) Prostate-Specific Membrane Antigen: A Novel Folate Hydrolase in Human Prostatic Carcinoma Cells. Clinical Cancer Research, 2, 1445-1451.
|
[6]
|
Kane, C.J., Amling, C.L., Johnstone, P.A.S., Pak, N., Lance, R.S., Thrasher, J.B., et al. (2003) Limited Value of Bone Scintigraphy and Computed Tomography in Assessing Biochemical Failure after Radical Prostatectomy. Urology, 61, 607-611. https://doi.org/10.1016/s0090-4295(02)02411-1
|
[7]
|
Jilg, C.A., Schultze-Seemann, W., Drendel, V., Vach, W., Wieser, G., Krauss, T., et al. (2014) Detection of Lymph Node Metastasis in Patients with Nodal Prostate Cancer Relapse Using 18F/11C-Choline Positron Emission Tomography/Computerized Tomography. Journal of Urology, 192, 103-111. https://doi.org/10.1016/j.juro.2013.12.054
|
[8]
|
Renard-Penna, R., Zhang-Yin, J., Montagne, S., Aupin, L., Bruguière, E., Labidi, M., et al. (2022) Targeting Local Recurrence after Surgery with MRI Imaging for Prostate Cancer in the Setting of Salvage Radiation Therapy. Frontiers in Oncology, 12, Article 775387. https://doi.org/10.3389/fonc.2022.775387
|
[9]
|
Sella, T., Schwartz, L.H. and Hricak, H. (2006) Retained Seminal Vesicles after Radical Prostatectomy: Frequency, MRI Characteristics, and Clinical Relevance. American Journal of Roentgenology, 186, 539-546. https://doi.org/10.2214/ajr.04.1770
|
[10]
|
Briganti, A., Abdollah, F., Nini, A., Suardi, N., Gallina, A., Capitanio, U., et al. (2012) Performance Characteristics of Computed Tomography in Detecting Lymph Node Metastases in Contemporary Patients with Prostate Cancer Treated with Extended Pelvic Lymph Node Dissection. European Urology, 61, 1132-1138. https://doi.org/10.1016/j.eururo.2011.11.008
|
[11]
|
De Visschere, P.J.L., Standaert, C., Fütterer, J.J., Villeirs, G.M., Panebianco, V., Walz, J., et al. (2019) A Systematic Review on the Role of Imaging in Early Recurrent Prostate Cancer. European Urology Oncology, 2, 47-76. https://doi.org/10.1016/j.euo.2018.09.010
|
[12]
|
Mason, B.R., Eastham, J.A., Davis, B.J., Mynderse, L.A., Pugh, T.J., Lee, R.J., et al. (2019) Current Status of MRI and PET in the NCCN Guidelines for Prostate Cancer. Journal of the National Comprehensive Cancer Network, 17, 506-513. https://doi.org/10.6004/jnccn.2019.7306
|
[13]
|
Notley, M., Yu, J., Fulcher, A.S., Turner, M.A., Cockrell, C.H. and Nguyen, D. (2015) Diagnosis of Recurrent Prostate Cancer and Its Mimics at Multiparametric Prostate MRI. The British Journal of Radiology, 88, Article 20150362. https://doi.org/10.1259/bjr.20150362
|
[14]
|
Jadvar, H. (2013) Imaging Evaluation of Prostate Cancer with 18F-Fluorodeoxyglucose PET/CT: Utility and Limitations. European Journal of Nuclear Medicine and Molecular Imaging, 40, 5-10. https://doi.org/10.1007/s00259-013-2361-7
|
[15]
|
Biscontini, G., Romagnolo, C., Cottignoli, C., Palucci, A., Fringuelli, F.M., Caldarella, C., et al. (2021) 18F-Fluciclovine Positron Emission Tomography in Prostate Cancer: A Systematic Review and Diagnostic Meta-Analysis. Diagnostics, 11, Article 304. https://doi.org/10.3390/diagnostics11020304
|
[16]
|
Farolfi, A., Calderoni, L., Mattana, F., Mei, R., Telo, S., Fanti, S., et al. (2021) Current and Emerging Clinical Applications of PSMA PET Diagnostic Imaging for Prostate Cancer. Journal of Nuclear Medicine, 62, 596-604. https://doi.org/10.2967/jnumed.120.257238
|
[17]
|
Hope, T.A., Goodman, J.Z., Allen, I.E., Calais, J., Fendler, W.P. and Carroll, P.R. (2018) Metaanalysis of 68Ga-PSMA-11PET Accuracy for the Detection of Prostate Cancer Validated by Histopathology. Journal of Nuclear Medicine, 60, 786-793. https://doi.org/10.2967/jnumed.118.219501
|
[18]
|
Zukotynski, K.A. and Kuo, P.H. (2022) 18F-DCFPyL PET/CT in Men with Prostate Cancer. Radiology, 305, 429-430. https://doi.org/10.1148/radiol.221536
|
[19]
|
Kuten, J., Fahoum, I., Savin, Z., Shamni, O., Gitstein, G., Hershkovitz, D., et al. (2019) Head-to-Head Comparison of 68Ga-PSMA-11 with 18F-PSMA-1007 PET/CT in Staging Prostate Cancer Using Histopathology and Immunohistochemical Analysis as a Reference Standard. Journal of Nuclear Medicine, 61, 527-532. https://doi.org/10.2967/jnumed.119.234187
|
[20]
|
Cytawa, W., Seitz, A.K., Kircher, S., Fukushima, K., Tran-Gia, J., Schirbel, A., et al. (2019) 68Ga-Psma I&T PET/CT for Primary Staging of Prostate Cancer. European Journal of Nuclear Medicine and Molecular Imaging, 47, 168-177. https://doi.org/10.1007/s00259-019-04524-z
|
[21]
|
Surasi, D.S., Eiber, M., Maurer, T., Preston, M.A., Helfand, B.T., Josephson, D., et al. (2023) Diagnostic Performance and Safety of Positron Emission Tomography with 18F-rhPSMA-7.3 in Patients with Newly Diagnosed Unfavourable Intermediate-to Very-High-Risk Prostate Cancer: Results from a Phase 3, Prospective, Multicentre Study (LIGHTHOUSE). European Urology, 84, 361-370. https://doi.org/10.1016/j.eururo.2023.06.018
|
[22]
|
Duan, H., Moradi, F., Davidzon, G.A., Liang, T., Song, H., Loening, A.M., et al. (2024) 68Ga-RM2 PET-MRI versus MRI Alone for Evaluation of Patients with Biochemical Recurrence of Prostate Cancer: A Single-Centre, Single-Arm, Phase 2/3 Imaging Trial. The Lancet Oncology, 25, 501-508. https://doi.org/10.1016/s1470-2045(24)00069-x
|
[23]
|
Wieser, G., Mansi, R., Grosu, A.L., Schultze-Seemann, W., Dumont-Walter, R.A., Meyer, P.T., et al. (2014) Positron Emission Tomography (PET) Imaging of Prostate Cancer with a Gastrin Releasing Peptide Receptor Antagonist—From Mice to Men. Theranostics, 4, 412-419. https://doi.org/10.7150/thno.7324
|
[24]
|
Matlaga, B.R., Eskew, L.A. and McCullough, D.L. (2003) Prostate Biopsy: Indications and Technique. Journal of Urology, 169, 12-19. https://doi.org/10.1016/s0022-5347(05)64024-4
|
[25]
|
Cornford, P., van den Bergh, R.C.N., Briers, E., Van den Broeck, T., Brunckhorst, O., Darraugh, J., et al. (2024) EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer—2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. European Urology, 86, 148-163. https://doi.org/10.1016/j.eururo.2024.03.027
|
[26]
|
Stefanova, V., Buckley, R., Flax, S., Spevack, L., Hajek, D., Tunis, A., et al. (2019) Transperineal Prostate Biopsies Using Local Anesthesia: Experience with 1,287 Patients. Prostate Cancer Detection Rate, Complications and Patient Tolerability. Journal of Urology, 201, 1121-1126. https://doi.org/10.1097/ju.0000000000000156
|
[27]
|
Rouvière, O., Puech, P., Renard-Penna, R., Claudon, M., Roy, C., Mège-Lechevallier, F., et al. (2019) Use of Prostate Systematic and Targeted Biopsy on the Basis of Multiparametric MRI in Biopsy-Naive Patients (MRI-FIRST): A Prospective, Multicentre, Paired Diagnostic Study. The Lancet Oncology, 20, 100-109. https://doi.org/10.1016/s1470-2045(18)30569-2
|
[28]
|
Privé, B.M., Israël, B., Janssen, M.J.R., van der Leest, M.M.G., de Rooij, M., van Ipenburg, J.A., et al. (2024) Multiparametric MRI and 18F-PSMA-1007 PET/CT for the Detection of Clinically Significant Prostate Cancer. Radiology, 311, e231879. https://doi.org/10.1148/radiol.231879
|
[29]
|
Chow, K.M., So, W.Z., Lee, H.J., Lee, A., Yap, D.W.T., Takwoingi, Y., et al. (2023) Head-to-Head Comparison of the Diagnostic Accuracy of Prostate-Specific Membrane Antigen Positron Emission Tomography and Conventional Imaging Modalities for Initial Staging of Intermediate-to High-Risk Prostate Cancer: A Systematic Review and Meta-Analysis. European Urology, 84, 36-48. https://doi.org/10.1016/j.eururo.2023.03.001
|
[30]
|
Sonni, I., Felker, E.R., Lenis, A.T., Sisk, A.E., Bahri, S., Allen-Auerbach, M., et al. (2021) Head-to-Head Comparison of 68Ga-PSMA-11 PET/CT and MPMRI with a Histopathology Gold Standard in the Detection, Intraprostatic Localization, and Determination of Local Extension of Primary Prostate Cancer: Results from a Prospective Single-Center Imaging Trial. Journal of Nuclear Medicine, 63, 847-854. https://doi.org/10.2967/jnumed.121.262398
|
[31]
|
Doan, P., Counter, W., Papa, N., Sheehan‐Dare, G., Ho, B., Lee, J., et al. (2022) Synchronous vs Independent Reading of Prostate‐Specific Membrane Antigen Positron Emission Tomography (PSMA‐PET) and Magnetic Resonance Imaging (MRI) to Improve Diagnosis of Prostate Cancer. BJU International, 131, 588-595. https://doi.org/10.1111/bju.15929
|
[32]
|
Eiber, M., Weirich, G., Holzapfel, K., Souvatzoglou, M., Haller, B., Rauscher, I., et al. (2016) Simultaneous 68Ga-PSMA HBED-CC PET/MRI Improves the Localization of Primary Prostate Cancer. European Urology, 70, 829-836. https://doi.org/10.1016/j.eururo.2015.12.053
|
[33]
|
Franklin, A., Yaxley, W.J., Raveenthiran, S., Coughlin, G., Gianduzzo, T., Kua, B., et al. (2020) Histological Comparison between Predictive Value of Preoperative 3‐T Multiparametric MRI and 68Ga‐PSMA PET/CT Scan for Pathological Outcomes at Radical Prostatectomy and Pelvic Lymph Node Dissection for Prostate Cancer. BJU International, 127, 71-79. https://doi.org/10.1111/bju.15134
|
[34]
|
Wu, H., Xu, T., Wang, X., Yu, Y., Fan, Z., Li, D., et al. (2020) Diagnostic Performance of 68Gallium Labelled Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging for Staging the Prostate Cancer with Intermediate or High Risk Prior to Radical Prostatectomy: A Systematic Review and Meta-Analysis. The World Journal of Men’s Health, 38, 208-219. https://doi.org/10.5534/wjmh.180124
|
[35]
|
Ling, S.W., de Jong, A.C., Schoots, I.G., Nasserinejad, K., Busstra, M.B., van der Veldt, A.A.M., et al. (2021) Comparison of 68Ga-Labeled Prostate-Specific Membrane Antigen Ligand Positron Emission Tomography/Magnetic Resonance Imaging and Positron Emission Tomography/Computed Tomography for Primary Staging of Prostate Cancer: A Systematic Review and Meta-Analysis. European Urology Open Science, 33, 61-71. https://doi.org/10.1016/j.euros.2021.09.006
|
[36]
|
Gandaglia, G., Ploussard, G., Valerio, M., Mattei, A., Fiori, C., Fossati, N., et al. (2019) A Novel Nomogram to Identify Candidates for Extended Pelvic Lymph Node Dissection among Patients with Clinically Localized Prostate Cancer Diagnosed with Magnetic Resonance Imaging-Targeted and Systematic Biopsies. European Urology, 75, 506-514. https://doi.org/10.1016/j.eururo.2018.10.012
|
[37]
|
Meijer, D., van Leeuwen, P.J., Roberts, M.J., Siriwardana, A.R., Morton, A., Yaxley, J.W., et al. (2021) External Validation and Addition of Prostate-Specific Membrane Antigen Positron Emission Tomography to the Most Frequently Used Nomograms for the Prediction of Pelvic Lymph-Node Metastases: An International Multicenter Study. European Urology, 80, 234-242. https://doi.org/10.1016/j.eururo.2021.05.006
|
[38]
|
Vis, A., Meijer, D., Roberts, M.J., Siriwardana, A.R., Morton, A., Yaxley, J.W., et al. (2024) Development and External Validation of a Novel Nomogram to Predict the Probability of Pelvic Lymph-Node Metastases in Prostate Cancer Patients Using Magnetic Resonance Imaging and Molecular Imaging with Prostate-Specific Membrane Antigen Positron Emission. European Urology, 85, S483-S484. https://doi.org/10.1016/s0302-2838(24)00422-6
|
[39]
|
Rauscher, I., Krönke, M., König, M., Gafita, A., Maurer, T., Horn, T., et al. (2019) Matched-Pair Comparison of 68Ga-PSMA-11 PET/CT and 18F-PSMA-1007 PET/CT: Frequency of Pitfalls and Detection Efficacy in Biochemical Recurrence after Radical Prostatectomy. Journal of Nuclear Medicine, 61, 51-57. https://doi.org/10.2967/jnumed.119.229187
|
[40]
|
Kroenke, M., Mirzoyan, L., Horn, T., Peeken, J.C., Wurzer, A., Wester, H., et al. (2020) Matched-Pair Comparison of 68Ga-PSMA-11 and 18F-rhPSMA-7 PET/CT in Patients with Primary and Biochemical Recurrence of Prostate Cancer: Frequency of Non-Tumor-Related Uptake and Tumor Positivity. Journal of Nuclear Medicine, 62, 1082-1088. https://doi.org/10.2967/jnumed.120.251447
|
[41]
|
Gao, X., Tang, Y., Chen, M., Li, J., Yin, H., Gan, Y., et al. (2023) A Prospective Comparative Study of [68Ga]Ga-RM26 and [68Ga]Ga-PSMA-617 PET/CT Imaging in Suspicious Prostate Cancer. European Journal of Nuclear Medicine and Molecular Imaging, 50, 2177-2187. https://doi.org/10.1007/s00259-023-06142-2
|
[42]
|
Jiang, Z., Guo, J., Hu, L., Yang, S., Meng, B. and Tang, Q. (2024) Diagnostic Performance of 18F-DCFPyL PET vs. 68Ga-PSMA PET/CT in Patients with Suspected Prostate Cancer: A Systemic Review and Meta-Analysis. Oncology Letters, 27, Article No. 188. https://doi.org/10.3892/ol.2024.14321
|
[43]
|
Ceci, F., Oprea-Lager, D.E., Emmett, L., Adam, J.A., Bomanji, J., Czernin, J., et al. (2021) E-PSMA: The EANM Standardized Reporting Guidelines V1.0 for PSMA-PET. European Journal of Nuclear Medicine and Molecular Imaging, 48, 1626-1638. https://doi.org/10.1007/s00259-021-05245-y
|
[44]
|
Seifert, R., Emmett, L., Rowe, S.P., Herrmann, K., Hadaschik, B., Calais, J., et al. (2023) Second Version of the Prostate Cancer Molecular Imaging Standardized Evaluation Framework Including Response Evaluation for Clinical Trials (PROMISE V2). European Urology, 83, 405-412. https://doi.org/10.1016/j.eururo.2023.02.002
|
[45]
|
Donswijk, M.L., Ettema, R.H., Meijer, D., Wondergem, M., Cheung, Z., Bekers, E.M., et al. (2024) The Accuracy and Intra-and Interobserver Variability of PSMA PET/CT for the Local Staging of Primary Prostate Cancer. European Journal of Nuclear Medicine and Molecular Imaging, 51, 1741-1752. https://doi.org/10.1007/s00259-024-06594-0
|
[46]
|
Duan, H., Davidzon, G.A., Moradi, F., Liang, T., Song, H. and Iagaru, A. (2023) Modified PROMISE Criteria for Standardized Interpretation of Gastrin-Releasing Peptide Receptor (GRPR)-Targeted PET. European Journal of Nuclear Medicine and Molecular Imaging, 50, 4087-4095. https://doi.org/10.1007/s00259-023-06385-z
|
[47]
|
García Vicente, A.M., Lucas Lucas, C., Pérez-Beteta, J., Borrelli, P., García Zoghby, L., Amo-Salas, M., et al. (2024) Analytical Performance Validation of Apromise Platform for Prostate Tumor Burden, Index and Dominant Tumor Assessment with 18F-DCFPyL PET/CT. a Pilot Study. Scientific Reports, 14, Article No. 3001. https://doi.org/10.1038/s41598-024-53683-z
|
[48]
|
Karpinski, M.J., Hüsing, J., Claassen, K., Möller, L., Kajüter, H., Oesterling, F., et al. (2024) Combining PSMA-PET and PROMISE to Re-Define Disease Stage and Risk in Patients with Prostate Cancer: A Multicentre Retrospective Study. The Lancet Oncology, 25, 1188-1201. https://doi.org/10.1016/s1470-2045(24)00326-7
|
[49]
|
Tilki, D., van den Bergh, R.C.N., Briers, E., Van den Broeck, T., Brunckhorst, O., Darraugh, J., et al. (2024) EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer. Part II—2024 Update: Treatment of Relapsing and Metastatic Prostate Cancer. European Urology, 86, 164-182. https://doi.org/10.1016/j.eururo.2024.04.010
|
[50]
|
Amling, C.L., Bergstralh, E.J., Blute, M.L., Slezak, J.M. and Zincke, H. (2001) Defining Prostate Specific Antigen Progression after Radical Prostatectomy: What Is the Most Appropriate CUT Point? Journal of Urology, 165, 1146-1151. https://doi.org/10.1016/s0022-5347(05)66452-x
|
[51]
|
Toussi, A., Stewart-Merrill, S.B., Boorjian, S.A., Psutka, S.P., Thompson, R.H., Frank, I., et al. (2016) Standardizing the Definition of Biochemical Recurrence after Radical Prostatectomy—What Prostate Specific Antigen Cut Point Best Predicts a Durable Increase and Subsequent Systemic Progression? Journal of Urology, 195, 1754-1759. https://doi.org/10.1016/j.juro.2015.12.075
|
[52]
|
Stephenson, A.J., Kattan, M.W., Eastham, J.A., Dotan, Z.A., Bianco, F.J., Lilja, H., et al. (2006) Defining Biochemical Recurrence of Prostate Cancer after Radical Prostatectomy: A Proposal for a Standardized Definition. Journal of Clinical Oncology, 24, 3973-3978. https://doi.org/10.1200/jco.2005.04.0756
|
[53]
|
Calais, J., Czernin, J., Cao, M., Kishan, A.U., Hegde, J.V., Shaverdian, N., et al. (2017) 68Ga-PSMA-11 PET/CT Mapping of Prostate Cancer Biochemical Recurrence after Radical Prostatectomy in 270 Patients with a PSA Level of Less than 1.0 ng/mL: Impact on Salvage Radiotherapy Planning. Journal of Nuclear Medicine, 59, 230-237. https://doi.org/10.2967/jnumed.117.201749
|
[54]
|
Farolfi, A., Ceci, F., Castellucci, P., Graziani, T., Siepe, G., Lambertini, A., et al. (2018) 68Ga-PSMA-11 PET/CT in Prostate Cancer Patients with Biochemical Recurrence after Radical Prostatectomy and PSA <0.5 ng/mL. Efficacy and Impact on Treatment Strategy. European Journal of Nuclear Medicine and Molecular Imaging, 46, 11-19. https://doi.org/10.1007/s00259-018-4066-4
|
[55]
|
Cerci, J.J., Fanti, S., Lobato, E.E., Kunikowska, J., Alonso, O., Medina, S., et al. (2021) Diagnostic Performance and Clinical Impact of 68Ga-PSMA-11 PET/CT Imaging in Early Relapsed Prostate Cancer after Radical Therapy: A Prospective Multicenter Study (IAEA-PSMA Study). Journal of Nuclear Medicine, 63, 240-247. https://doi.org/10.2967/jnumed.120.261886
|
[56]
|
Jeet, V., Parkinson, B., Song, R., Sharma, R. and Hoyle, M. (2023) Histopathologically Validated Diagnostic Accuracy of PSMA-PET/CT in the Primary and Secondary Staging of Prostate Cancer and the Impact of PSMA-PET/CT on Clinical Management: A Systematic Review and Meta-Analysis. Seminars in Nuclear Medicine, 53, 706-718. https://doi.org/10.1053/j.semnuclmed.2023.02.006
|
[57]
|
Perera, M., Papa, N., Roberts, M., Williams, M., Udovicich, C., Vela, I., et al. (2020) Gallium-68 Prostate-Specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer—Updated Diagnostic Utility, Sensitivity, Specificity, and Distribution of Prostate-Specific Membrane Antigen-Avid Lesions: A Systematic Review and Meta-Analysis. European Urology, 77, 403-417. https://doi.org/10.1016/j.eururo.2019.01.049
|
[58]
|
Caire, A.A., Sun, L., Ode, O., Stackhouse, D.A., Maloney, K., Donatucci, C., et al. (2009) Delayed Prostate-Specific Antigen Recurrence after Radical Prostatectomy: How to Identify and What Are Their Clinical Outcomes? Urology, 74, 643-647. https://doi.org/10.1016/j.urology.2009.02.049
|
[59]
|
Crocerossa, F., Marchioni, M., Novara, G., Carbonara, U., Ferro, M., Russo, G.I., et al. (2021) Detection Rate of Prostate Specific Membrane Antigen Tracers for Positron Emission Tomography/Computerized Tomography in Prostate Cancer Biochemical Recurrence: A Systematic Review and Network Meta-Analysis. Journal of Urology, 205, 356-369. https://doi.org/10.1097/ju.0000000000001369
|
[60]
|
Eiber, M., Maurer, T., Souvatzoglou, M., Beer, A.J., Ruffani, A., Haller, B., et al. (2015) Evaluation of Hybrid 68Ga-PSMA Ligand PET/CT in 248 Patients with Biochemical Recurrence after Radical Prostatectomy. Journal of Nuclear Medicine, 56, 668-674. https://doi.org/10.2967/jnumed.115.154153
|
[61]
|
Emmett, L., van Leeuwen, P.J., Nandurkar, R., Scheltema, M.J., Cusick, T., Hruby, G., et al. (2017) Treatment Outcomes from 68Ga-PSMA PET/CT-Informed Salvage Radiation Treatment in Men with Rising PSA after Radical Prostatectomy: Prognostic Value of a Negative PSMA PET. Journal of Nuclear Medicine, 58, 1972-1976. https://doi.org/10.2967/jnumed.117.196683
|
[62]
|
Emmett, L., Tang, R., Nandurkar, R., Hruby, G., Roach, P., Watts, J.A., et al. (2019) 3-Year Freedom from Progression after 68Ga-PSMA PET/CT-Triaged Management in Men with Biochemical Recurrence after Radical Prostatectomy: Results of a Prospective Multicenter Trial. Journal of Nuclear Medicine, 61, 866-872. https://doi.org/10.2967/jnumed.119.235028
|
[63]
|
Horn, T., Krönke, M., Rauscher, I., Haller, B., Robu, S., Wester, H., et al. (2019) Single Lesion on Prostate-Specific Membrane Antigen-Ligand Positron Emission Tomography and Low Prostate-Specific Antigen Are Prognostic Factors for a Favorable Biochemical Response to Prostate-Specific Membrane Antigen-Targeted Radioguided Surgery in Recurrent Prostate Cancer. European Urology, 76, 517-523. https://doi.org/10.1016/j.eururo.2019.03.045
|
[64]
|
McCarthy, M., Francis, R., Tang, C., Watts, J. and Campbell, A. (2019) A Multicenter Prospective Clinical Trial of 68Gallium PSMA HBED-CC PET-CT Restaging in Biochemically Relapsed Prostate Carcinoma: Oligometastatic Rate and Distribution Compared with Standard Imaging. International Journal of Radiation Oncology∙Biology∙Physics, 104, 801-808. https://doi.org/10.1016/j.ijrobp.2019.03.014
|
[65]
|
Cornford, P., van den Bergh, R.C.N., Briers, E., Van den Broeck, T., Cumberbatch, M.G., De Santis, M., et al. (2021) EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II—2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer. European Urology, 79, 263-282. https://doi.org/10.1016/j.eururo.2020.09.046
|
[66]
|
Fendler, W.P., Weber, M., Iravani, A., Hofman, M.S., Calais, J., Czernin, J., et al. (2019) Prostate-Specific Membrane Antigen Ligand Positron Emission Tomography in Men with Nonmetastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 25, 7448-7454. https://doi.org/10.1158/1078-0432.ccr-19-1050
|
[67]
|
Fourquet, A., Aveline, C., Cussenot, O., Créhange, G., Montravers, F., Talbot, J., et al. (2020) 68Ga-PSMA-11 PET/CT in Restaging Castration-Resistant Nonmetastatic Prostate Cancer: Detection Rate, Impact on Patients’ Disease Management and Adequacy of Impact. Scientific Reports, 10, Article No. 2104. https://doi.org/10.1038/s41598-020-58975-8
|
[68]
|
Afshar-Oromieh, A., Hetzheim, H., Kratochwil, C., Benesova, M., Eder, M., Neels, O.C., et al. (2015) The Theranostic PSMA Ligand PSMA-617 in the Diagnosis of Prostate Cancer by PET/CT: Biodistribution in Humans, Radiation Dosimetry, and First Evaluation of Tumor Lesions. Journal of Nuclear Medicine, 56, 1697-1705. https://doi.org/10.2967/jnumed.115.161299
|
[69]
|
Sartor, O., de Bono, J., Chi, K.N., Fizazi, K., Herrmann, K., Rahbar, K., et al. (2021) Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. New England Journal of Medicine, 385, 1091-1103. https://doi.org/10.1056/nejmoa2107322
|
[70]
|
Sadaghiani, M.S., Sheikhbahaei, S., Werner, R.A., Pienta, K.J., Pomper, M.G., Gorin, M.A., et al. (2022) 177Lu‐PSMA Radioligand Therapy Effectiveness in Metastatic Castration‐Resistant Prostate Cancer: An Updated Systematic Review and Meta‐Analysis. The Prostate, 82, 826-835. https://doi.org/10.1002/pros.24325
|
[71]
|
Sathekge, M.M., Lawal, I.O., Bal, C., Bruchertseifer, F., Ballal, S., Cardaci, G., et al. (2024) Actinium-225-PSMA Radioligand Therapy of Metastatic Castration-Resistant Prostate Cancer (WARMTH Act): A Multicentre, Retrospective Study. The Lancet Oncology, 25, 175-183. https://doi.org/10.1016/s1470-2045(23)00638-1
|
[72]
|
Al-Ibraheem, A. and Scott, A.M. (2023) 161Tb-PSMA Unleashed: A Promising New Player in the Theranostics of Prostate Cancer. Nuclear Medicine and Molecular Imaging, 57, 168-171. https://doi.org/10.1007/s13139-023-00804-7
|
[73]
|
Schaefer-Schuler, A., Burgard, C., Blickle, A., Maus, S., Petrescu, C., Petto, S., et al. (2024) [161Tb]Tb-PSMA-617 Radioligand Therapy in Patients with mCRPC: Preliminary Dosimetry Results and Intra-Individual Head-To-Head Comparison to [177Lu]Lu-PSMA-617. Theranostics, 14, 1829-1840. https://doi.org/10.7150/thno.92273
|
[74]
|
Delgadillo, R., Ford, J.C., Abramowitz, M.C., Dal Pra, A., Pollack, A. and Stoyanova, R. (2020) The Role of Radiomics in Prostate Cancer Radiotherapy. Strahlentherapie und Onkologie, 196, 900-912. https://doi.org/10.1007/s00066-020-01679-9
|
[75]
|
Ferro, M., de Cobelli, O., Vartolomei, M.D., Lucarelli, G., Crocetto, F., Barone, B., et al. (2021) Prostate Cancer Radiogenomics—From Imaging to Molecular Characterization. International Journal of Molecular Sciences, 22, Article 9971. https://doi.org/10.3390/ijms22189971
|
[76]
|
Penzkofer, T., Padhani, A.R., Turkbey, B., Haider, M.A., Huisman, H., Walz, J., et al. (2021) ESUR/ESUI Position Paper: Developing Artificial Intelligence for Precision Diagnosis of Prostate Cancer Using Magnetic Resonance Imaging. European Radiology, 31, 9567-9578. https://doi.org/10.1007/s00330-021-08021-6
|
[77]
|
Solari, E.L., Gafita, A., Schachoff, S., Bogdanović, B., Villagrán Asiares, A., Amiel, T., et al. (2021) The Added Value of PSMA PET/MR Radiomics for Prostate Cancer Staging. European Journal of Nuclear Medicine and Molecular Imaging, 49, 527-538. https://doi.org/10.1007/s00259-021-05430-z
|
[78]
|
Zhao, L., Bao, J., Qiao, X., Jin, P., Ji, Y., Li, Z., et al. (2022) Predicting Clinically Significant Prostate Cancer with a Deep Learning Approach: A Multicentre Retrospective Study. European Journal of Nuclear Medicine and Molecular Imaging, 50, 727-741. https://doi.org/10.1007/s00259-022-06036-9
|
[79]
|
Chan, T.H., Haworth, A., Wang, A., Osanlouy, M., Williams, S., Mitchell, C., et al. (2023) Detecting Localised Prostate Cancer Using Radiomic Features in PSMA PET and Multiparametric MRI for Biologically Targeted Radiation Therapy. EJNMMI Research, 13, Article No. 34. https://doi.org/10.1186/s13550-023-00984-5
|
[80]
|
Zamboglou, C., Bettermann, A.S., Gratzke, C., Mix, M., Ruf, J., Kiefer, S., et al. (2020) Uncovering the Invisible—Prevalence, Characteristics, and Radiomics Feature-Based Detection of Visually Undetectable Intraprostatic Tumor Lesions in 68GaPSMA-11 PET Images of Patients with Primary Prostate Cancer. European Journal of Nuclear Medicine and Molecular Imaging, 48, 1987-1997. https://doi.org/10.1007/s00259-020-05111-3
|
[81]
|
Yi, Z., Hu, S., Lin, X., Zou, Q., Zou, M., Zhang, Z., et al. (2021) Machine Learning-Based Prediction of Invisible Intraprostatic Prostate Cancer Lesions on 68Ga-PSMA-11 PET/CT in Patients with Primary Prostate Cancer. European Journal of Nuclear Medicine and Molecular Imaging, 49, 1523-1534. https://doi.org/10.1007/s00259-021-05631-6
|
[82]
|
Muehlematter, U.J., Schweiger, L., Ferraro, D.A., Hermanns, T., Maurer, T., Heck, M.M., et al. (2023) Development and External Validation of a Multivariable [68Ga]Ga-PSMA-11 PET-Based Prediction Model for Lymph Node Involvement in Men with Intermediate or High-Risk Prostate Cancer. European Journal of Nuclear Medicine and Molecular Imaging, 50, 3137-3146. https://doi.org/10.1007/s00259-023-06278-1
|
[83]
|
Zamboglou, C., Bettermann, A.S., Gratzke, C., Mix, M., Ruf, J., Kiefer, S., et al. (2020) Uncovering the Invisible—Prevalence, Characteristics, and Radiomics Feature-Based Detection of Visually Undetectable Intraprostatic Tumor Lesions in 68GaPSMA-11 PET Images of Patients with Primary Prostate Cancer. European Journal of Nuclear Medicine and Molecular Imaging, 48, 1987-1997. https://doi.org/10.1007/s00259-020-05111-3
|
[84]
|
Alongi, P., Stefano, A., Comelli, A., Laudicella, R., Scalisi, S., Arnone, G., et al. (2021) Radiomics Analysis of 18F-Choline PET/CT in the Prediction of Disease Outcome in High-Risk Prostate Cancer: An Explorative Study on Machine Learning Feature Classification in 94 Patients. European Radiology, 31, 4595-4605. https://doi.org/10.1007/s00330-020-07617-8
|
[85]
|
Cysouw, M.C.F., Jansen, B.H.E., van de Brug, T., Oprea-Lager, D.E., Pfaehler, E., de Vries, B.M., et al. (2020) Machine Learning-Based Analysis of [18F]DCFPyL PET Radiomics for Risk Stratification in Primary Prostate Cancer. European Journal of Nuclear Medicine and Molecular Imaging, 48, 340-349. https://doi.org/10.1007/s00259-020-04971-z
|