[1]
|
D’Arsonval, A. (1893) Physiological Action of Currents of Great Frequency. In: Riley, W.H., Ed., Modern Medicine and Bacteriological World, Modern Medicine Publishing Co., 200-203.
|
[2]
|
Condello, M., D’Avack, G., Spugnini, E.P. and Meschini, S. (2022) Electrochemotherapy: An Alternative Strategy for Improving Therapy in Drug-Resistant SOLID Tumors. Cancers, 14, Article 4341. https://doi.org/10.3390/cancers14174341
|
[3]
|
Dahl, O. and Overgaard, J. (1995) A Century with Hyperthermic Oncology in Scandinavia. Acta Oncologica, 34, 1075-1083. https://doi.org/10.3109/02841869509127234
|
[4]
|
McCaig, C.D., Rajnicek, A.M., Song, B. and Zhao, M. (2005) Controlling Cell Behavior Electrically: Current Views and Future Potential. Physiological Reviews, 85, 943-978. https://doi.org/10.1152/physrev.00020.2004
|
[5]
|
Bear, M.F., Connors, B.W. and Paradiso, M.A. (2006) Neuroscience: Exploring the Brain. 3rd Edition, Lippincott.
|
[6]
|
Nordenstrom, B.W.E. (1983) Biologically Closed Electric Circuits: Clinical Experimental and Theoretical Evidence for an Additional Circulatory System. Nordic Medical Publications.
|
[7]
|
Nordenstrom, B.W.E. (1998) Exploring BCEC-Systems, (Biologically Closed Electric Circuits). Nordic Medical Publications.
|
[8]
|
Nordenström, B.E.W. (1978) Preliminary Clinical Trials of Electrophoretic Ionization in the Treatment of Malignant Tumors. IRCS Journal of Medical Science, 6, 537-540.
|
[9]
|
Nordenström, B.E.W. (1985) Electrochemical Treatment of Cancer. Annales de Radiologie, 28, 128-129.
|
[10]
|
Loewenstein, W.R. (1999) The Touchstone of Life, Molecular Information, Cell Com-munication and the Foundations of the Life. Oxford University Press, 298-304.
|
[11]
|
Zhao, M., Song, B., Pu, J., Wada, T., Reid, B., Tai, G., et al. (2006) Electrical Signals Control Wound Healing through Phosphatidylinositol-3-Oh Kinase-γ and PTEN. Nature, 442, 457-460. https://doi.org/10.1038/nature04925
|
[12]
|
Becker, R.O. and Selden, G. (1985) The Body Electric, Electromagnetism and the Foundation of Life. William Morrow & Co.
|
[13]
|
Becker, R.O. (1990) Cross Currents. Jeremy P Tarcher Inc.
|
[14]
|
Nuccitelli, R., Nuccitelli, P., Li, C., Narsing, S., Pariser, D.M. and Lui, K. (2011) The Electric Field near Human Skin Wounds Declines with Age and Provides a Noninvasive Indicator of Wound Healing. Wound Repair and Regeneration, 19, 645-655. https://doi.org/10.1111/j.1524-475x.2011.00723.x
|
[15]
|
Lin, J.C. (1989) Electromagnetic Interaction with Biological Systems. Pergamon Press.
|
[16]
|
Bersani, F. (1999) Electricity and Magnetism in Biology and Medicine. Kluwer Academic/Plenum Publishers.
|
[17]
|
Adey, W.R. (1984) Nonlinear, Nonequilibrium Aspects of Electromagnetic Field Interactions at Cell Membranes. In: Adey, W.R. and Lawrence, A.F., Eds., Nonlinear Electrodynamics in Biological Systems, Springer, 3-22. https://doi.org/10.1007/978-1-4613-2789-9_1
|
[18]
|
Liboff, A.R. (2003) Ion Cyclotron Resonance in Biological Systems: Experimental Evidence. In: Stavroulakis, P., Ed., Biological Effects of Electromagnetic Fields, Springer Ver-lag, 76-113.
|
[19]
|
Liboff, A.R. (1985) Geomagnetic Cyclotron Resonance in Living Cells. Journal of Biological Physics, 13, 99-102. https://doi.org/10.1007/bf01878387
|
[20]
|
Lednev, V.V. (1991) Possible Mechanism for the Influence of Weak Magnetic Fields on Biological Systems. Bioelectromagnetics, 12, 71-75. https://doi.org/10.1002/bem.2250120202
|
[21]
|
Blanchard, J.P. and Blackman, C.F. (1994) Clarification and Application of an Ion Parametric Resonance Model for Magnetic Field Interactions with Biological Systems. Bioelectromagnetics, 15, 217-238. https://doi.org/10.1002/bem.2250150306
|
[22]
|
Giudice, E.D., Fleischmann, M., Preparata, G. and Talpo, G. (2002) On the “Unreasonable” Effects of ELF Magnetic Fields Upon a System of Ions. Bioelectromagnetics, 23, 522-530. https://doi.org/10.1002/bem.10046
|
[23]
|
Jacobson, J.I. (1991) A Look at the Possible Mechanism and Potential of Magneto Therapy. Journal of Theoretical Biology, 149, 97-119. https://doi.org/10.1016/s0022-5193(05)80074-8
|
[24]
|
Vincze, G., Szasz, A. and Liboff, A.R. (2008) New Theoretical Treatment of Ion Resonance Phenomena. Bioelectromagnetics, 29, 380-386. https://doi.org/10.1002/bem.20406
|
[25]
|
Reinhold, H.S. (1987) Tumour Microcirculation. In: Field, S.B. and Franconi, C., Eds., Physics and Technology of Hyperthermia, Springer, 448-457. https://doi.org/10.1007/978-94-009-3597-6_20
|
[26]
|
Reinhold, H.S. (1987) Effects of Hyperthermia on Tumour Microcirculation. In: Field, S.B. and Franconi, C., Eds., Physics and Technology of Hyperthermia, Springer, 458-469. https://doi.org/10.1007/978-94-009-3597-6_21
|
[27]
|
Tanaka, Y. (2001) Thermal Responses of Microcirculation and Modification of Tumor Blood Flow in Treating the Tumors. In: Kosaka, M., Sugahara, T., Schmidt, K.L. and Simon, E., Eds., Thermotherapy for Neoplasia, Inflammation, and Pain, Springer, 408-419. https://doi.org/10.1007/978-4-431-67035-3_45
|
[28]
|
Reinhold, H.S. and Blachiewicz, B.B. (1978) Decrease in Tumor Microcirculation during Hyperthermia, In: Streffer, C., vanBeuningen, D., Dietzel, F., Röttinger, E., Robinson, J.E., Scherer, E., Seeber, S. and Trott, K.R., Eds., Cancer Therapy by Hyperthermia and Radiation, Urban & Schwarzenberg, 231-232
|
[29]
|
Dudar, T.E. and Jain, R.K. (1984) Differential Response of Normal and Tumor Microcirculation to Hyperthermia. Cancer Research, 44, 605-612
|
[30]
|
Hudlicka, O. and Tyler, K.R. (1984) The Effect of Long‐Term High‐Frequency Stimulation on Capillary Density and Fibre Types in Rabbit Fast Muscles. The Journal of Physiology, 353, 435-445. https://doi.org/10.1113/jphysiol.1984.sp015345
|
[31]
|
Endrich, B. (2019) Morphologic and Hemodynamic Alterations in Capillaries during Hyperthermia. In: Anghileri, L. and Robert, J., Eds., Hyperthermia in Cancer Treatment, CRC Press, 17-47. https://doi.org/10.1201/9780429266546-2
|
[32]
|
Zant, G.V. (2019) Effects of Hyperthermia on Hematopoietic Tissues. In: Anghileri, L. and Robert, J., Eds., Hyperthermia in Cancer Treatment, CRC Press, 59-73. https://doi.org/10.1201/9780429266546-4
|
[33]
|
Hales, J.R.S. (2019) Aspects of Circulatory Responses in Animals Pertinent to the Use of Hyperthermia in Cancer Treatment. In: Anghileri, L. and Robert, J., Eds., Hyperthermia in Cancer Treatment, CRC Press, 49-58. https://doi.org/10.1201/9780429266546-3
|
[34]
|
Ingram, D.L. and Mount, L.E. (1975) Man and Animals in Hot Environments, Topics in Environmental Physiology and Medicine. Springer Verlag. https://doi.org/10.1007/978-1-4613-9368-9
|
[35]
|
Urano, M. (1994) Thermochemotherapy: From in Vitro and in Vivo Experiments to Potential Clinical Application. In: Urano, M. and Douple, E.B., Eds., Hyperthermia in Oncology, Routledge, 169-204.
|
[36]
|
Ohno, T., Sakagami, T., Shiomi, M., et al. (1993) Hyperthermai Therapy for Deep-regional Cancer: Thermochemotherapy, a Combination of Hyperthermia with Chemotherapy. In: Matsuda, T., Ed., Cancer Treatment by Hyperthermia, Radiation and Drugs, Taylor & Francis, p 303-316.
|
[37]
|
Piantelli, M., Tatone, D., Castrilli, G., Savini, F., Maggiano, N., Larocca, L.M., et al. (2001) Quercetin and Tamoxifen Sensitize Human Melanoma Cells to Hyperthermia. Melanoma Research, 11, 469-476. https://doi.org/10.1097/00008390-200110000-00005
|
[38]
|
Pilling, M.J. and Seakins, P.W. (1995) Reaction Kinetics. Oxford University Press.
|
[39]
|
Whitney, J., Carswell, W. and Rylander, N. (2013) Arrhenius Parameter Determination as a Function of Heating Method and Cellular Microenvironment Based on Spatial Cell Viability Analysis. International Journal of Hyperthermia, 29, 281-295. https://doi.org/10.3109/02656736.2013.802375
|
[40]
|
Ware, M.J., Krzykawska-Serda, M., Chak-Shing Ho, J., Newton, J., Suki, S., Law, J., et al. (2017) Optimizing Non-Invasive Radiofrequency Hyperthermia Treatment for Improving Drug Delivery in 4T1 Mouse Breast Cancer Model. Scientific Reports, 7, Article No. 43961. https://doi.org/10.1038/srep43961
|
[41]
|
Yang, K., Huang, C., Chi, M., Chiang, H., Wang, Y., Hsia, C., et al. (2016) In Vitro Comparison of Conventional Hyperthermia and Modulated Electro-Hyperthermia. Oncotarget, 7, 84082-84092. https://doi.org/10.18632/oncotarget.11444
|
[42]
|
Andocs, G., Rehman, M.U., Zhao, Q., Tabuchi, Y., Kanamori, M. and Kondo, T. (2016) Comparison of Biological Effects of Modulated Electro-Hyperthermia and Conventional Heat Treatment in Human Lymphoma U937 Cells. Cell Death Discovery, 2, Article No. 16039. https://doi.org/10.1038/cddiscovery.2016.39
|
[43]
|
Andocs, G., Rehman, M.U. and Zhao, Q. (2015) Nanoheating without Artificial Nanoparticles Part II. Experimental Support of the Nanoheating Concept of the Modulated Electro-Hyperthermia Method, Using U937 Cell Suspension Model. Biology and Medicine, 7, 1-9. https://doi.org/10.4172/0974-8369.1000247
|
[44]
|
Tsang, Y., Huang, C., Yang, K., Chi, M., Chiang, H., Wang, Y., et al. (2015) Improving Immunological Tumor Microenvironment Using Electro-Hyperthermia Followed by Dendritic Cell Immunotherapy. BMC Cancer, 15, Article No. 708. https://doi.org/10.1186/s12885-015-1690-2
|
[45]
|
Qin, W., Akutsu, Y., Andocs, G., Suganami, A., Hu, X., Yusup, G., et al. (2014) Modulated Electro-Hyperthermia Enhances Dendritic Cell Therapy through an Abscopal Effect in Mice. Oncology Reports, 32, 2373-2379. https://doi.org/10.3892/or.2014.3500
|
[46]
|
Szasz, A. (2024) Preclinical Verification of Modulated Electro-Hyperthermia Part I. In Vitro Research. International Journal of Clinical Medicine, 15, 257-298.
|
[47]
|
Lee, S., Lorant, G., Grand, L. and Szasz, A.M. (2023) The Clinical Validation of Modulated Electro-Hyperthermia (MEHT). Cancers, 15, Article 4569. https://doi.org/10.3390/cancers15184569
|
[48]
|
Nash, J.F. (1950) Equilibrium Points in n-Person Games. Proceedings of the National Academy of Sciences, 36, 48-49. https://doi.org/10.1073/pnas.36.1.48
|
[49]
|
Kaur, P., Hurwitz, M.D., Krishnan, S. and Asea, A. (2011) Combined Hyperthermia and Radiotherapy for the Treatment of Cancer. Cancers, 3, 3799-3823. https://doi.org/10.3390/cancers3043799
|
[50]
|
Kwon, S., Jung, S. and Baek, S.H. (2023) Combination Therapy of Radiation and Hyperthermia, Focusing on the Synergistic Anti-Cancer Effects and Research Trends. Antioxidants, 12, Article 924. https://doi.org/10.3390/antiox12040924
|
[51]
|
Brüningk, S., Powathil, G., Ziegenhein, P., Ijaz, J., Rivens, I., Nill, S., et al. (2018) Combining Radiation with Hyperthermia: A Multiscale Model Informed by in Vitro Experiments. Journal of the Royal Society Interface, 15, Article ID: 20170681. https://doi.org/10.1098/rsif.2017.0681
|
[52]
|
Datta, N.R., Ordóñez, S.G., Gaipl, U.S., Paulides, M.M., Crezee, H., Gellermann, J., et al. (2015) Local Hyperthermia Combined with Radiotherapy and-/or Chemotherapy: Recent Advances and Promises for the Future. Cancer Treatment Reviews, 41, 742-753. https://doi.org/10.1016/j.ctrv.2015.05.009
|
[53]
|
Phung, D.C., Nguyen, H.T., Phuong Tran, T.T., Jin, S.G., Yong, C.S., Truong, D.H., et al. (2019) Combined Hyperthermia and Chemotherapy as a Synergistic Anticancer Treatment. Journal of Pharmaceutical Investigation, 49, 519-526. https://doi.org/10.1007/s40005-019-00431-5
|
[54]
|
Rao, W., Deng, Z. and Liu, J. (2010) A Review of Hyperthermia Combined with Radiotherapy/Chemotherapy on Malignant Tumors. Critical Reviews™ in Biomedical Engineering, 38, 101-116. https://doi.org/10.1615/critrevbiomedeng.v38.i1.80
|
[55]
|
Wiedermann, G.J., Feyerabend, T., Mentzel, M., et al. (1994) Thermochemotherapie: grunde fur die kombinationsbehandlung mit hyperthermia und chemotherapie. Fo-cus MUL, 11, 44-50.
|
[56]
|
Issels, R.D., Abdel-Rahman, S., Salat, C., et al. (1998) Neoadjuvant Chemotherapy Combined with Regional Hyperthermia (RHT) Followed by Surgery and Radiation in Primary Recurrent High-Risk Soft Tissue Sarcomas (HR STS) of Adults (Updated Report). Journal of Cancer Research and Clinical Oncology, 124, R105.
|
[57]
|
LeVeen, H.H., Rajagopalan, P.R., Vujic, I., et al. (1984) Radiofrequency Thermotherapy, Local Chemotherapy, and Arterial Occlusion in the Treatment of Nonresectable Cancer. The American Surgeon, 50, 61-65.
|
[58]
|
Okamura, K., Nakashima, K., Fukushima, Y., et al. (2004) Hyperthermia with Low Dose Chemotherapy for Advanced Non-Small-Cell Lung Cancer. The Kadota Fund International Forum 2004, Awaji Island, 14-18 June 2004, 31-32.
|
[59]
|
Franchi, F., Grassi, P., Ferro, D., Pigliucci, G., De Chicchis, M., Castigliani, G., et al. (2007) Antiangiogenic Metronomic Chemotherapy and Hyperthermia in the Palliation of Advanced Cancer. European Journal of Cancer Care, 16, 258-262. https://doi.org/10.1111/j.1365-2354.2006.00737.x
|
[60]
|
Cole, K.S. (1968) Membranes, Ions and ImpulsesUniversity of California Press.
|
[61]
|
Schwan, H.P. (1963) Determination of Biological Impedances. In: Nastuk, W.L., Ed., Electrophysiological Methods, Elsevier, 323-407. https://doi.org/10.1016/b978-1-4831-6743-5.50013-7
|
[62]
|
Haemmerich, D., Staelin, S.T., Tsai, J.Z., Tungjitkusolmun, S., Mahvi, D.M. and Webster, J.G. (2003) In Vivo Electrical Conductivity of Hepatic Tumours. Physiological Measurement, 24, 251-260. https://doi.org/10.1088/0967-3334/24/2/302
|
[63]
|
Scholz, B. and Anderson, R. (2000) On Electrical Impedance Scanning-Principles and Simulations. Electromedica, 68, 35-44.
|
[64]
|
Szentgyorgyi, A. (1980) The Living State and Cancer. Physiological Chemistry and Physics, 12, 99-110.
|
[65]
|
Szentgyorgyi, A. (1998) Electronic Biology and Cancer. Marcel Dekkerm.
|
[66]
|
Szentgyorgyi, A. (1968) Bioelectronics, a Study on Cellular Regulations, Defense and Cancer. Academic Press.
|
[67]
|
Sha, L., Ward, E.R. and Story, B. (2002) A Review of Dielectric Properties of Normal and Malignant Breast Tissue. Proceedings IEEE SoutheastCon 2002, Columbia, 5-7 April 2002, 457-462.
|
[68]
|
Smith, S.R., Foster, K.R. and Wolf, G.L. (1986) Dielectric Properties of VX-2 Carcinoma versus Normal Liver Tissue. IEEE Transactions on Biomedical Engineering, 33, 522-524. https://doi.org/10.1109/tbme.1986.325740
|
[69]
|
Kotnik, T. and Miklavčič, D. (2000) Theoretical Evaluation of the Distributed Power Dissipation in Biological Cells Exposed to Electric Fields. Bioelectromagnetics, 21, 385-394. https://doi.org/10.1002/1521-186x(200007)21:5<385::aid-bem7>3.3.co;2-6
|
[70]
|
Loft, S.M., et al. (1992) Bioimpedance and Cancer Therapy. The 8th International Conference on Electrical Bio-Impedance, Kuopio, 28-31 July 1992, 119-121.
|
[71]
|
Szasz, A. and Szasz, O. (2020) Time-Fractal Modulation of Modulated Electro-Hyperthermia (mEHT). In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Cambridge Scholars, 377-415. https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
|
[72]
|
Szasz, A. (2021) Therapeutic Basis of Electromagnetic Resonances and Signal-Modulation. Open Journal of Biophysics, 11, 314-350. https://doi.org/10.4236/ojbiphy.2021.113011
|
[73]
|
Szasz, A. (2022) Time-Fractal Modulation—Possible Modulation Effects in Human Therapy. Open Journal of Biophysics, 12, 38-87. https://doi.org/10.4236/ojbiphy.2022.121003
|
[74]
|
Szasz, A. (2019) Thermal and Nonthermal Effects of Radiofrequency on Living State and Applications as an Adjuvant with Radiation Therapy. Journal of Radiation and Cancer Research, 10, 1-17. https://doi.org/10.4103/jrcr.jrcr_25_18
|
[75]
|
Pennock, B.E. and Schwan, H.P. (1969) Further Observations on the Electrical Properties of Hemoglobin-Bound Water. The Journal of Physical Chemistry, 73, 2600-2610. https://doi.org/10.1021/j100842a024
|
[76]
|
Pething, R. (1979) Dielectric, and Electronic Properties of Biological Materials. John Wiley & Sons.
|
[77]
|
Papp, E., Vancsik, T., Kiss, E. and Szasz, O. (2017) Energy Absorption by the Membrane Rafts in the Modulated Electro-Hyperthermia (mEHT). Open Journal of Biophysics, 7, 216-229. https://doi.org/10.4236/ojbiphy.2017.74016
|
[78]
|
Horváth, I., Multhoff, G., Sonnleitner, A. and Vígh, L. (2008) Membrane-Associated Stress Proteins: More than Simply Chaperones. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1778, 1653-1664. https://doi.org/10.1016/j.bbamem.2008.02.012
|
[79]
|
Minnaar, C.A. and Szasz, A. (2022) Forcing the Antitumor Effects of Hsps Using a Modulated Electric Field. Cells, 11, Article 1838. https://doi.org/10.3390/cells11111838
|
[80]
|
Szasz, A. (2021) The Capacitive Coupling Modalities for Oncological Hyperthermia. Open Journal of Biophysics, 11, 252-313. https://doi.org/10.4236/ojbiphy.2021.113010
|
[81]
|
Ferenczy, G.L. and Szasz, A. (2020) Technical Challenges and Proposals in Oncological Hyperthermia. In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Cambridge Scholars, 72-90. https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
|
[82]
|
Szasz, A. (2022) Heterogeneous Heat Absorption Is Complementary to Radiotherapy. Cancers, 14, Article 901. https://doi.org/10.3390/cancers14040901
|
[83]
|
Szasz, A., Szasz, N. and Szasz, O. (2010) Oncothermia—Principles and Practices. Springer Science. http://www.springer.com/gp/book/9789048194971
|
[84]
|
Szasz A. (2020) Challenges and Solutions of Oncological Hyperthermia. Cambridge Scholars Publishing. https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
|
[85]
|
Szasz, A. (2015) Bioelectromagnetic Paradigm of Cancer Treatment Oncothermia. In: Rosch, P.J., Ed., Bioelectromagnetic and Subtle Energy Medicine, CRC Press, 323-336.
|
[86]
|
Szasz, A. (2013) Electromagnetic Effects in Nanoscale Range. In: Shimizu, T. and Kondo, T., Eds., Cellular Response to Physical Stress and Therapeutic Applications, Nova Science Publishers, 55-81.
|
[87]
|
Szasz, A. and Morita, T. (2012) Heat Therapy in Oncology, New Paradigm in Hyperthermia. Nippon Hvoronsha.
|
[88]
|
Szasz, A., Szasz, O. and Szasz, N. (2006) Physical Background and Technical Realizations of Hyperthermia. In: Szasz, A., Szasz, O. and Szasz, N., Eds., Hyperthermia in Cancer Treatment: A Primer, Springer, 27-59. https://doi.org/10.1007/978-0-387-33441-7_3
|
[89]
|
Lee, S., Fiorentini, G., Szasz, A.M., Szigeti, G., Szasz, A. and Minnaar, C.A. (2020) Quo Vadis Oncological Hyperthermia (2020)? Frontiers in Oncology, 10, Article 1690. https://doi.org/10.3389/fonc.2020.01690
|
[90]
|
Szasz, A. (2020) Challenges and Solutions of Oncological Hyperthermia. Cambridge Scholars. https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
|
[91]
|
Szasz, A. (2017) Oncothermia Is a Kind of Hyperthermia. Hot Topics: Temperature, Dose, Selectivity. Oncothermia Journal, 20, 105-120. http://oncotherm.com/sites/oncotherm/files/2017-10/Pages%20from%20Oncothermia%20Journal%20volume%2020_0.pdf
|
[92]
|
Szász, A.M., Lóránt, G., Szász, A. and Szigeti, G. (2023) The Immunogenic Connection of Thermal and Nonthermal Molecular Effects in Modulated Electro-hyperthermia. Open Journal of Biophysics, 13, 103-142. https://doi.org/10.4236/ojbiphy.2023.134007
|
[93]
|
Minnaar, C.A., Kotzen, J.A., Ayeni, O.A., Vangu, M. and Baeyens, A. (2020) Potentiation of the Abscopal Effect by Modulated Electro-Hyperthermia in Locally Advanced Cervical Cancer Patients. Frontiers in Oncology, 10, Article 376. https://doi.org/10.3389/fonc.2020.00376
|
[94]
|
Chi, M., Mehta, M.P., Yang, K., Lai, H., Lin, Y., Ko, H., et al. (2020) Putative Abscopal Effect in Three Patients Treated by Combined Radiotherapy and Modulated Electrohyperthermia. Frontiers in Oncology, 10, Article 254. https://doi.org/10.3389/fonc.2020.00254
|