[1]
|
Characterising operational performance and oxygen crossover of the low-cost cylindrical cathode in microbial fuel cells
Journal of Environmental Chemical Engineering,
2023
DOI:10.1016/j.jece.2023.109462
|
|
|
[2]
|
Microbially catalyzed enhanced bioelectrochemical performance using covalent organic framework–modified cathode in a microbial electrosynthesis system
Electrochimica Acta,
2023
DOI:10.1016/j.electacta.2023.143127
|
|
|
[3]
|
Characterising operational performance and oxygen crossover of the low-cost cylindrical cathode in microbial fuel cells
Journal of Environmental Chemical Engineering,
2023
DOI:10.1016/j.jece.2023.109462
|
|
|
[4]
|
Characterising operational performance and oxygen crossover of the low-cost cylindrical cathode in microbial fuel cells
Journal of Environmental Chemical Engineering,
2023
DOI:10.1016/j.jece.2023.109462
|
|
|
[5]
|
Microbially catalyzed enhanced bioelectrochemical performance using covalent organic framework‐modified anode in a microbial fuel cell
International Journal of Energy Research,
2022
DOI:10.1002/er.8364
|
|
|
[6]
|
Nickel ferrite/MXene-coated carbon felt anodes for enhanced microbial fuel cell performance
Chemosphere,
2021
DOI:10.1016/j.chemosphere.2020.128784
|
|
|
[7]
|
MnCo2O4 coated carbon felt anode for enhanced microbial fuel cell performance
Chemosphere,
2021
DOI:10.1016/j.chemosphere.2020.129098
|
|
|
[8]
|
Utilization of Raw Glycerol for Pyocyanin Production fromPseudomonas Aeruginosain Half-Microbial Fuel Cells: Evaluation of Two Electrochemical Approaches
Journal of The Electrochemical Society,
2013
DOI:10.1149/2.035310jes
|
|
|