[1]
|
Felten, D., Felten, S., Carlson, S., Olschowka, J. and Livnat, S. (1985) Noradrenergic and Peptidergic Innervation of Lymphoid Tissue. The Journal of Immunology, 135, 755-765. https://doi.org/10.4049/jimmunol.135.2.755
|
[2]
|
McEwen, B.S. and Lasley, E.N. (2002) The End of Stress as We Know It. Joseph Henry Press.
|
[3]
|
Chavan, S.S., Pavlov, V.A. and Tracey, K.J. (2022) Neuroimmune Interactions in Peripheral Organs. Annual Review of Neuroscience, 45, 201-219.
|
[4]
|
Blalock, J.E. and Smith, E.M. (2007) Conceptual Development of the Immune System as a Sixth Sense. Brain, Behavior, and Immunity, 21, 23-33. https://doi.org/10.1016/j.bbi.2006.09.004
|
[5]
|
Besedovsky, H. and Sorkin, E. (1977) Network of Immune-Neuroendocrine Interactions. Clinical and Experimental Immunology, 27, 1-12.
|
[6]
|
Dantzer, R. (2018) Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa. Physiological Reviews, 98, 477-504. https://doi.org/10.1152/physrev.00039.2016
|
[7]
|
Stevens-Felten, S.Y. and Bellinger, D.L. (1997) Noradrenergic and Peptidergic Innervation of Lymphoid Organs. Chemical Immunology and Allergy, 69, 99-131. https://doi.org/10.1159/000058655
|
[8]
|
Nance, D.M. and Sanders, V.M. (2007) Autonomic Innervation and Regulation of the Immune System (1987-2007). Brain, Behavior, and Immunity, 21, 736-745. https://doi.org/10.1016/j.bbi.2007.03.008
|
[9]
|
Kawashima, K., Fujii, T., Moriwaki, Y., Misawa, H. and Horiguchi, K. (2012) Reconciling Neuronally and Nonneuronally Derived Acetylcholine in the Regulation of Immune Function. Annals of the New York Academy of Sciences, 1261, 7-17. https://doi.org/10.1111/j.1749-6632.2012.06516.x
|
[10]
|
Rosas-Ballina, M., Ochani, M., Parrish, W.R., Ochani, K., Harris, Y.T., Huston, J.M., et al. (2008) Splenic Nerve Is Required for Cholinergic Antiinflammatory Pathway Control of TNF in Endotoxemia. Proceedings of the National Academy of Sciences, 105, 11008-11013. https://doi.org/10.1073/pnas.0803237105
|
[11]
|
Martelli, D., McKinley, M.J. and McAllen, R.M. (2014) The Cholinergic Anti-Inflammatory Pathway: A Critical Review. Autonomic Neuroscience, 182, 65-69. https://doi.org/10.1016/j.autneu.2013.12.007
|
[12]
|
Bratton, B.O., Martelli, D., McKinley, M.J., Trevaks, D., Anderson, C.R. and McAllen, R.M. (2012) Neural Regulation of Inflammation: No Neural Connection from the Vagus to Splenic Sympathetic Neurons. Experimental Physiology, 97, 1180-1185. https://doi.org/10.1113/expphysiol.2011.061531
|
[13]
|
Tracey, K.J. (2002) The Inflammatory Reflex. Nature, 420, 853-859. https://doi.org/10.1038/nature01321
|
[14]
|
Wang, Y., He, C., Ren, S., Wang, Y., Wang, Z., Gao, W., et al. (2023) Optogenetic Stimulation of the Vagus Nerve Enhances Glucose-Stimulated Insulin Secretion and Promotes β-Cell Proliferation in the Pancreas. Nature Biomedical Engineering, 7, 113-122.
|
[15]
|
Stangl, H., Springorum, H., Muschter, D., Grässel, S. and Straub, R.H. (2015) Catecholaminergic-to-Cholinergic Transition of Sympathetic Nerve Fibers Is Stimulated under Healthy but Not under Inflammatory Arthritic Conditions. Brain, Behavior, and Immunity, 46, 180-191. https://doi.org/10.1016/j.bbi.2015.02.022
|
[16]
|
Rogausch, H., del Rey, A., Kabiersch, A., Reschke, W., Ortel, J. and Besedovsky, H. (1997) Endotoxin Impedes Vasoconstriction in the Spleen: Role of Endogenous Interleukin-1 and Sympathetic Innervation. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 272, R2048-R2054. https://doi.org/10.1152/ajpregu.1997.272.6.r2048
|
[17]
|
Rogausch, H., Zwingmann, D., Trudewind, M., del Rey, A., Voigt, K. and Besedovsky, H. (2003) Local and Systemic Autonomic Nervous Effects on Cell Migration to the Spleen. Journal of Applied Physiology, 94, 469-475. https://doi.org/10.1152/japplphysiol.00411.2002
|
[18]
|
Ignatowski, T.A., Gallant, S. and Spengler, R.N. (1996) Temporal Regulation by Adrenergic Receptor Stimulation of Macrophage (Mφ)-Derived Tumor Necrosis Factor (TNF) Production Post-LPS Challenge. Journal of Neuroimmunology, 65, 107-117. https://doi.org/10.1016/0165-5728(96)00004-5
|
[19]
|
Izeboud, C.A., Mocking, J.A.J., Monshouwer, M., van Miert, A.S.J.P.A.M. and Witkamp, R.F. (1999) Participation of Β-Adrenergic Receptors on Macrophages in Modulation of LPS-Induced Cytokine Release. Journal of Receptors and Signal Transduction, 19, 191-202. https://doi.org/10.3109/10799899909036645
|
[20]
|
Padro, C.J. and Sanders, V.M. (2014) Neuroendocrine Regulation of Inflammation. Seminars in Immunology, 26, 357-368. https://doi.org/10.1016/j.smim.2014.01.003
|
[21]
|
Roesslein, M., Froehlich, C., Jans, F., Piegeler, T., Goebel, U. and Loop, T. (2015) Hypothalamic Inflammation in the Control of Metabolic Function. Comparative Biochemistry and Physiology Part A, 9, 475-483.
|
[22]
|
Flierl, M.A., Rittirsch, D., Nadeau, B.A., Chen, A.J., Sarma, J.V., Zetoune, F.S., et al. (2007) Phagocyte-derived Catecholamines Enhance Acute Inflammatory Injury. Nature, 449, 721-725. https://doi.org/10.1038/nature06185
|
[23]
|
Ramer-Quinn, D.S., Swanson, M.A., Lee, W.T. and Sanders, V.M. (2000) Cytokine Production by Naive and Primary Effector CD4+ T Cells Exposed to Norepinephrine. Brain, Behavior, and Immunity, 14, 239-255. https://doi.org/10.1006/brbi.2000.0603
|
[24]
|
Swanson, M.A., Lee, W.T. and Sanders, V.M. (2001) IFN-γ Production by Th1 Cells Generated from Naive CD4+ T Cells Exposed to Norepinephrine. The Journal of Immunology, 166, 232-240. https://doi.org/10.4049/jimmunol.166.1.232
|
[25]
|
Madden, K.S., Felten, S.Y., Felten, D.L., Sundaresan, P.R. and Livnat, S. (1989) Sympathetic Neural Modulation of the Immune System: I. Depression of T Cell Immunity in Vivo and in Vitro Following Chemical Sympathectomy. Brain, Behavior, and Immunity, 3, 72-89. https://doi.org/10.1016/0889-1591(89)90007-x
|
[26]
|
Raju, T.N. (1999) The Nobel Chronicles. 1950: Edward Calvin Kendall (1886-1972); Philip Showalter Hench (1896-1965); and Tadeus Reichstein (1897-1996). The Lancet, 353, 1370. https://doi.org/10.1016/s0140-6736(05)74374-9
|
[27]
|
Vandevyver, S., Dejager, L., Tuckermann, J. and Libert, C. (2013) New Insights into the Anti-Inflammatory Mechanisms of Glucocorticoids: An Emerging Role for Glucocorticoid-Receptor-Mediated Transactivation. Endocrinology, 154, 993-1007. https://doi.org/10.1210/en.2012-2045
|
[28]
|
Calandra, T., Bernhagen, J., Metz, C.N., Spiegel, L.A., Bacher, M., Donnelly, T., et al. (1995) MIF as a Glucocorticoid-Induced Modulator of Cytokine Production. Nature, 377, 68-71. https://doi.org/10.1038/377068a0
|
[29]
|
Ramesh, R., Kozhaya, L., McKevitt, K., Djuretic, I.M., Carlson, T.J., Quintero, M.A., et al. (2014) Pro-Inflammatory Human Th17 Cells Selectively Express P-Glycoprotein and Are Refractory to Glucocorticoids. Journal of Experimental Medicine, 211, 89-104. https://doi.org/10.1084/jem.20130301
|
[30]
|
Frank, M.G., Watkins, L.R. and Maier, S.F. (2013) Stress-Induced Glucocorticoids as a Neuroendocrine Alarm Signal of Danger. Brain, Behavior, and Immunity, 33, 1-6. https://doi.org/10.1016/j.bbi.2013.02.004
|
[31]
|
Zmijewski, M.A. and Slominski, A.T. (2011) Neuroendocrinology of the Skin: An Overview and Selective Analysis. Dermato-Endocrinology, 3, 3-10. https://doi.org/10.4161/derm.3.1.14617
|
[32]
|
Weigent, D.A. (2013) Lymphocyte GH-Axis Hormones in Immunity. Cellular Immunology, 285, 118-132. https://doi.org/10.1016/j.cellimm.2013.10.003
|
[33]
|
Russell, D.H., Kibler, R., Matrisian, L., Larson, D.F., Poulos, B. and Magun, B.E. (1985) Prolactin Receptors on Human T and B Lymphocytes: Antagonism of Prolactin Binding by Cyclosporine. The Journal of Immunology, 134, 3027-3031. https://doi.org/10.4049/jimmunol.134.5.3027
|
[34]
|
Suarez, A.L.P., López-Rincón, G., Martínez Neri, P.A. and Estrada-Chávez, C. (2014) Prolactin in Inflammatory Response. In: Diakonova, M., Ed., Recent Advances in Prolactin Research, Springer International Publishing, 243-264. https://doi.org/10.1007/978-3-319-12114-7_11
|
[35]
|
Cabot, P.J., Carter, L., Gaiddon, C., Zhang, Q., Schäfer, M., Loeffler, J.P., et al. (1997) Immune Cell-Derived Beta-Endorphin. Production, Release, and Control of Inflammatory Pain in Rats. Journal of Clinical Investigation, 100, 142-148. https://doi.org/10.1172/jci119506
|
[36]
|
Stein, C., Hassan, A.H., Przewłocki, R., Gramsch, C., Peter, K. and Herz, A. (1990) Opioids from Immunocytes Interact with Receptors on Sensory Nerves to Inhibit Nociception in Inflammation. Proceedings of the National Academy of Sciences of the United States of America, 87, 5935-5939. https://doi.org/10.1073/pnas.87.15.5935
|
[37]
|
Eriksson, F., Kavelaars, A. and Heijnen, C. (2001) Preproenkephalin: An Unappreciated Neuroimmune Communicator. In: Ader, R., Felten, D. and Chohen, N., Eds., Psychoneuroimmunology (3rd Edition), Academic Press, 391-403.
|
[38]
|
Sharp, B. and Yakshz, T. (1997) Pain Killers of the Immune System. Nature Medicine, 3, 831-832. https://doi.org/10.1038/nm0897-831
|
[39]
|
Smith, E.M., Meyer, W.J. and Blalock, J.E. (1982) Virus-Induced Corticosterone in Hypophysectomized Mice: A Possible Lymphoid Adrenal Axis. Science, 218, 1311-1312. https://doi.org/10.1126/science.6183748
|
[40]
|
Wang, H. and Klein, J.R. (2001) Immune Function of Thyroid Stimulating Hormone and Receptor. Critical Reviews™ in Immunology, 21, 323-337. https://doi.org/10.1615/critrevimmunol.v21.i4.20
|
[41]
|
Bağriaçik, E.U. and Klein, J.R. (2000) The Thyrotropin (Thyroid-Stimulating Hormone) Receptor Is Expressed on Murine Dendritic Cells and on a Subset of Cd45RBhigh Lymph Node T Cells: Functional Role for Thyroid-Stimulating Hormone during Immune Activation. The Journal of Immunology, 164, 6158-6165. https://doi.org/10.4049/jimmunol.164.12.6158
|
[42]
|
Kroemer, G., Brezinschek, H., Faessler, R., Schauenstein, K. and Wick, G. (1988) Physiology and Pathology of an Immunoendocrine Feedback Loop. Immunology Today, 9, 163-165. https://doi.org/10.1016/0167-5699(88)91289-3
|
[43]
|
Blalock, J.E. (1984) The Immune System as a Sensory Organ. The Journal of Immunology, 132, 1067-1070. https://doi.org/10.4049/jimmunol.132.3.1067
|
[44]
|
Auron, P.E., Webb, A.C., Rosenwasser, L.J., Mucci, S.F., Rich, A., Wolff, S.M., et al. (1984) Nucleotide Sequence of Human Monocyte Interleukin 1 Precursor cDNA. Proceedings of the National Academy of Sciences of the United States of America, 81, 7907-7911. https://doi.org/10.1073/pnas.81.24.7907
|
[45]
|
Lomedico, P.T., Gubler, U., Hellmann, C.P., Dukovich, M., Giri, J.G., Pan, Y.E., et al. (1984) Cloning and Expression of Murine Interleukin-1 cDNA in Escherichia coli. Nature, 312, 458-462. https://doi.org/10.1038/312458a0
|
[46]
|
Berkenbosch, F., van Oers, J., del Rey, A., Tilders, F. and Besedovsky, H. (1987) Corticotropin-Releasing Factor-Producing Neurons in the Rat Activated by Interleukin-1. Science, 238, 524-526. https://doi.org/10.1126/science.2443979
|
[47]
|
Blatteis, C.M. (1990) Neuromodulative Actions of Cytokines. The Yale Journal of Biology and Medicine, 63, 133-146.
|
[48]
|
Evans, S.S., Repasky, E.A. and Fisher, D.T. (2015) Fever and the Thermal Regulation of Immunity: The Immune System Feels the Heat. Nature Reviews Immunology, 15, 335-349. https://doi.org/10.1038/nri3843
|
[49]
|
Saper, C.B., Romanovsky, A.A. and Scammell, T.E. (2012) Neural Circuitry Engaged by Prostaglandins during the Sickness Syndrome. Nature Neuroscience, 15, 1088-1095. https://doi.org/10.1038/nn.3159
|
[50]
|
Ericsson, A., Kovacs, K. and Sawchenko, P. (1994) A Functional Anatomical Analysis of Central Pathways Subserving the Effects of Interleukin-1 on Stress-Related Neuroendocrine Neurons. The Journal of Neuroscience, 14, 897-913. https://doi.org/10.1523/jneurosci.14-02-00897.1994
|
[51]
|
Tilders, J.H. and Schmidt, E.D. (1999) Cross-sensitization between Immune and Non-Immune Stressors. In: Dantzer, R., Wollman, E.E. and Yirmiya, R., Eds., Cytokines, Stress, and Depression, Springer, 179-197. https://doi.org/10.1007/978-0-585-37970-8_11
|
[52]
|
Kanczkowski, W., Alexaki, V., Tran, N., Großklaus, S., Zacharowski, K., Martinez, A., et al. (2013) Hypothalamo-Pituitary and Immune-Dependent Adrenal Regulation during Systemic Inflammation. Proceedings of the National Academy of Sciences of the United States of America, 110, 14801-14806. https://doi.org/10.1073/pnas.1313945110
|
[53]
|
Gisslinger, H., Svoboda, T., Clodi, M., Gilly, B., Ludwig, H., Havelec, L., et al. (1993) Interferon-α Stimulates the Hypothalamic-Pituitary-Adrenal Axis in Vivo and in Vitro. Neuroendocrinology, 57, 489-495. https://doi.org/10.1159/000126396
|
[54]
|
Fabris, N., Mocchegiani, E. and Provinciali, M. (1995) Pituitary-Thyroid Axis and Immune System: A Reciprocal Neuroendocrine-Lmmune Interaction. Hormone Research, 43, 29-38. https://doi.org/10.1159/000184234
|
[55]
|
Guo, L.Z. (2021) Interaction between Neuroendocrinology and Immunology: Hypothalamic-Pituitary-Thyroid Axis in Immunoendocrinology. Open Journal of Endocrine and Metabolic Diseases, 11, 63-69. https://doi.org/10.4236/ojemd.2021.112005
|
[56]
|
Chang, C., Chien, Y., Lin, P., Chen, C. and Wu, M. (2020) Nonthyroidal Illness Syndrome and Hypothyroidism in Ischemic Heart Disease Population: A Systematic Review and Meta-Analysis. The Journal of Clinical Endocrinology & Metabolism, 105, 2830-2845. https://doi.org/10.1210/clinem/dgaa310
|
[57]
|
De Luca, R., Davis, P.J., Lin, H., Gionfra, F., Percario, Z.A., Affabris, E., et al. (2021) Thyroid Hormones Interaction with Immune Response, Inflammation and Non-Thyroidal Illness Syndrome. Frontiers in Cell and Developmental Biology, 8, Article 614030. https://doi.org/10.3389/fcell.2020.614030
|
[58]
|
Chavarría, M.J.O., Arredondo, D.A.S., Greene, E.D. and Weber, F.L.R. (2019) Sick Euthyroid Syndrome. Acta Médica Grupo Ángeles, 17, 13113-13116.
|
[59]
|
Patki, V., Kumbhojkar, A. and Khilnani, P. (2017) Sick Euthyroid Syndrome: A Myth or Reality. Journal of Pediatric Critical Care, 4, 44-51. https://doi.org/10.21304/2017.0404.00213
|
[60]
|
Ganesan, K. and Wadud, K. (2020) Euthyroid Sick Syndrome. StatPearls.
|
[61]
|
Gaykema, R.P.A. and Goehler, L.E. (2009) Lipopolysaccharide Challenge-Induced Suppression of Fos in Hypothalamic Orexin Neurons: Their Potential Role in Sickness Behavior. Brain, Behavior, and Immunity, 23, 926-930. https://doi.org/10.1016/j.bbi.2009.03.005
|
[62]
|
Hart, B.L. (2011) Behavioural Defences in Animals against Pathogens and Parasites: Parallels with the Pillars of Medicine in Humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 3406-3417. https://doi.org/10.1098/rstb.2011.0092
|
[63]
|
Hart, B.L. (1988) Biological Basis of the Behavior of Sick Animals. Neuroscience & Biobehavioral Reviews, 12, 123-137. https://doi.org/10.1016/s0149-7634(88)80004-6
|
[64]
|
Larson, S.J., Romanoff, R.L., Dunn, A.J. and Glowa, J.R. (2002) Effects of Interleukin-1β on Food-Maintained Behavior in the Mouse. Brain, Behavior, and Immunity, 16, 398-410. https://doi.org/10.1006/brbi.2001.0634
|
[65]
|
Lenczowski, M.J.P., Bluthé, R.-., Roth, J., Rees, G.S., Rushforth, D.A., van Dam, A.-., et al. (1999) Central Administration of Rat IL-6 Induces HPA Activation and Fever but Not Sickness Behavior in Rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 276, R652-R658. https://doi.org/10.1152/ajpregu.1999.276.3.r652
|
[66]
|
Luheshi, G.N., Bluthé, R., Rushforth, D., Mulcahy, N., Konsman, J., Goldbach, M., et al. (2000) Vagotomy Attenuates the Behavioural but Not the Pyrogenic Effects of Interleukin-1 in Rats. Autonomic Neuroscience, 85, 127-132. https://doi.org/10.1016/s1566-0702(00)00231-9
|
[67]
|
Vivash, L. and O’Brien, T.J. (2015) Imaging Microglial Activation with TSPO PET: Lighting up Neurologic Diseases? Journal of Nuclear Medicine, 57, 165-168. https://doi.org/10.2967/jnumed.114.141713
|
[68]
|
Epelman, S., Lavine, K.J. and Randolph, G.J. (2014) Origin and Functions of Tissue Macrophages. Immunity, 41, 21-35. https://doi.org/10.1016/j.immuni.2014.06.013
|
[69]
|
Ginhoux, F., Greter, M., Leboeuf, M., Nandi, S., See, P., Gokhan, S., et al. (2010) Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages. Science, 330, 841-845. https://doi.org/10.1126/science.1194637
|
[70]
|
Paolicelli, R.C., Bolasco, G., Pagani, F., Maggi, L., Scianni, M., Panzanelli, P., et al. (2011) Synaptic Pruning by Microglia Is Necessary for Normal Brain Development. Science, 333, 1456-1458. https://doi.org/10.1126/science.1202529
|
[71]
|
Stevens, B., Allen, N.J., Vazquez, L.E., Howell, G.R., Christopherson, K.S., Nouri, N., et al. (2007) The Classical Complement Cascade Mediates CNS Synapse Elimination. Cell, 131, 1164-1178. https://doi.org/10.1016/j.cell.2007.10.036
|
[72]
|
Santello, M. and Volterra, A. (2012) TNFα in Synaptic Function: Switching Gears. Trends in Neurosciences, 35, 638-647. https://doi.org/10.1016/j.tins.2012.06.001
|