[1]
|
Wang, Y., Zhang, Z., Sun, W., Zhang, J., Xu, Q., Zhou, X., et al. (2022) Ferroptosis in Colorectal Cancer: Potential Mechanisms and Effective Therapeutic Targets. Biomedicine & Pharmacotherapy, 153, Article ID: 113524. https://doi.org/10.1016/j.biopha.2022.113524
|
[2]
|
Bayır, H., Dixon, S.J., Tyurina, Y.Y., Kellum, J.A. and Kagan, V.E. (2023) Ferroptotic Mechanisms and Therapeutic Targeting of Iron Metabolism and Lipid Peroxidation in the Kidney. Nature Reviews Nephrology, 19, 315-336. https://doi.org/10.1038/s41581-023-00689-x
|
[3]
|
Keum, N. and Giovannucci, E. (2019) Global Burden of Colorectal Cancer: Emerging Trends, Risk Factors and Prevention Strategies. Nature Reviews Gastroenterology & Hepatology, 16, 713-732. https://doi.org/10.1038/s41575-019-0189-8
|
[4]
|
Weitz, J., Koch, M., Debus, J., Höhler, T., Galle, P.R. and Büchler, M.W. (2005) Colorectal Cancer. The Lancet, 365, 153-165. https://doi.org/10.1016/s0140-6736(05)17706-x
|
[5]
|
Murphy, N., Moreno, V., Hughes, D.J., Vodicka, L., Vodicka, P., Aglago, E.K., et al. (2019) Lifestyle and Dietary Environmental Factors in Colorectal Cancer Susceptibility. Molecular Aspects of Medicine, 69, 2-9. https://doi.org/10.1016/j.mam.2019.06.005
|
[6]
|
Basten, M., et al. (2024) Psychosocial Factors, Health Behaviors and Risk of Cancer Incidence: Testing Interaction and Effect Modification in an Individual Participant Data Meta-Analysis. International Journal of Cancer, 154, 1745-1759.
|
[7]
|
Kanikarla Marie, P., Haymaker, C., Parra, E.R., Kim, Y.U., Lazcano, R., Gite, S., et al. (2021) Pilot Clinical Trial of Perioperative Durvalumab and Tremelimumab in the Treatment of Resectable Colorectal Cancer Liver Metastases. Clinical Cancer Research, 27, 3039-3049. https://doi.org/10.1158/1078-0432.ccr-21-0163
|
[8]
|
Wang, S., Song, Y., Cao, K., Zhang, L., Fang, X., Chen, F., et al. (2021) Photothermal Therapy Mediated by Gold Nanocages Composed of Anti-Pdl1 and Galunisertib for Improved Synergistic Immunotherapy in Colorectal Cancer. Acta Biomaterialia, 134, 621-632. https://doi.org/10.1016/j.actbio.2021.07.051
|
[9]
|
Pollini, T., Tran, T., Wong, P., Adam, M.A., Alseidi, A., Corvera, C., et al. (2024) Improved Survival of Patients Receiving Immunotherapy and Chemotherapy Following Curative-Intent Resection of Colorectal Liver Metastases. Journal of Gastrointestinal Surgery, 28, 246-251. https://doi.org/10.1016/j.gassur.2023.12.026
|
[10]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[11]
|
Vasan, N., Baselga, J. and Hyman, D.M. (2019) A View on Drug Resistance in Cancer. Nature, 575, 299-309. https://doi.org/10.1038/s41586-019-1730-1
|
[12]
|
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042
|
[13]
|
Sui, X., Zhang, R., Liu, S., Duan, T., Zhai, L., Zhang, M., et al. (2018) RSL3 Drives Ferroptosis through GPX4 Inactivation and ROS Production in Colorectal Cancer. Frontiers in Pharmacology, 9, Article No. 1371. https://doi.org/10.3389/fphar.2018.01371
|
[14]
|
Guo, B., Zheng, S., Ringwood, J., Henriques, J. and Zhang, D. (2021) Guest Editorial: Advances in Wave Energy Conversion Systems. IET Renewable Power Generation, 15, 3039-3044. https://doi.org/10.1049/rpg2.12303
|
[15]
|
Dekker, E., Tanis, P.J., Vleugels, J.L.A., Kasi, P.M. and Wallace, M.B. (2019) Colorectal cancer. The Lancet, 394, 1467-1480. https://doi.org/10.1016/s0140-6736(19)32319-0
|
[16]
|
Ciardiello, F., Ciardiello, D., Martini, G., Napolitano, S., Tabernero, J. and Cervantes, A. (2022) Clinical Management of Metastatic Colorectal Cancer in the Era of Precision Medicine. CA: A Cancer Journal for Clinicians, 72, 372-401. https://doi.org/10.3322/caac.21728
|
[17]
|
Cancer Genome Atlas, N. (2012) Comprehensive Molecular Characterization of Human Colon and Rectal Cancer. Nature, 487, 330-337. https://doi.org/10.1038/nature11252
|
[18]
|
Wang, M., Chen, S., He, X., Yuan, Y. and Wei, X. (2024) Targeting Inflammation as Cancer Therapy. Journal of Hematology & Oncology, 17, Article No. 13. https://doi.org/10.1186/s13045-024-01528-7
|
[19]
|
Polyak, K. and Kalluri, R. (2010) The Role of the Microenvironment in Mammary Gland Development and Cancer. Cold Spring Harbor Perspectives in Biology, 2, a003244. https://doi.org/10.1101/cshperspect.a003244
|
[20]
|
Soysal, S.D., Tzankov, A. and Muenst, S.E. (2015) Role of the Tumor Microenvironment in Breast Cancer. Pathobiology, 82, 142-152. https://doi.org/10.1159/000430499
|
[21]
|
Lewis, C.V., Vinh, A., Diep, H., Samuel, C.S., Drummond, G.R. and Kemp-Harper, B.K. (2019) Distinct Redox Signalling Following Macrophage Activation Influences Profibrotic Activity. Journal of Immunology Research, 2019, Article ID: 1278301. https://doi.org/10.1155/2019/1278301
|
[22]
|
Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S., Mardani, F., et al. (2018) Macrophage Plasticity, Polarization, and Function in Health and Disease. Journal of Cellular Physiology, 233, 6425-6440. https://doi.org/10.1002/jcp.26429
|
[23]
|
Wynn, T.A., Chawla, A. and Pollard, J.W. (2013) Macrophage Biology in Development, Homeostasis and Disease. Nature, 496, 445-455. https://doi.org/10.1038/nature12034
|
[24]
|
Xu, H., Niu, H., Wang, H., Lin, J. and Yao, J. (2024) Knockdown of RTEL1 Alleviates Chronic Obstructive Pulmonary Disease by Modulating M1, M2 Macrophage Polarization and Inflammation. COPD: Journal of Chronic Obstructive Pulmonary Disease, 21, Article ID: 2316607. https://doi.org/10.1080/15412555.2024.2316607
|
[25]
|
Khayatan, D., Razavi, S.M., Arab, Z.N., Hosseini, Y., Niknejad, A., Momtaz, S., et al. (2023) Superoxide Dismutase: A Key Target for the Neuroprotective Effects of Curcumin. Molecular and Cellular Biochemistry, 479, 693-705. https://doi.org/10.1007/s11010-023-04757-5
|
[26]
|
Li, Q., Lin, L., Zhang, C., Zhang, H., Ma, Y., Qian, H., et al. (2024) The Progression of Inorganic Nanoparticles and Natural Products for Inflammatory Bowel Disease. Journal of Nanobiotechnology, 22, Article No. 17. https://doi.org/10.1186/s12951-023-02246-x
|
[27]
|
Ding, Y., Wang, H., Niu, J., Luo, M., Gou, Y., Miao, L., et al. (2016) Induction of ROS Overload by Alantolactone Prompts Oxidative DNA Damage and Apoptosis in Colorectal Cancer Cells. International Journal of Molecular Sciences, 17, Article No. 558. https://doi.org/10.3390/ijms17040558
|
[28]
|
Shah, S.C. and Itzkowitz, S.H. (2022) Colorectal Cancer in Inflammatory Bowel Disease: Mechanisms and Management. Gastroenterology, 162, 715-730.e3. https://doi.org/10.1053/j.gastro.2021.10.035
|
[29]
|
Janney, A., Powrie, F. and Mann, E.H. (2020) Host-Microbiota Maladaptation in Colorectal Cancer. Nature, 585, 509-517. https://doi.org/10.1038/s41586-020-2729-3
|
[30]
|
Chen, H., Tong, T., Lu, S., Ji, L., Xuan, B., Zhao, G., et al. (2023) Urea Cycle Activation Triggered by Host-Microbiota Maladaptation Driving Colorectal Tumorigenesis. Cell Metabolism, 35, 651-666.e7. https://doi.org/10.1016/j.cmet.2023.03.003
|
[31]
|
Dixon, S.J., Patel, D.N., Welsch, M., Skouta, R., Lee, E.D., Hayano, M., et al. (2014) Pharmacological Inhibition of Cystine-Glutamate Exchange Induces Endoplasmic Reticulum Stress and Ferroptosis. eLife, 3, e02523. https://doi.org/10.7554/elife.02523
|
[32]
|
Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285. https://doi.org/10.1016/j.cell.2017.09.021
|
[33]
|
Hassannia, B., Vandenabeele, P. and Vanden Berghe, T. (2019) Targeting Ferroptosis to Iron Out Cancer. Cancer Cell, 35, 830-849. https://doi.org/10.1016/j.ccell.2019.04.002
|
[34]
|
Xie, Y., Hou, W., Song, X., Yu, Y., Huang, J., Sun, X., et al. (2016) Ferroptosis: Process and Function. Cell Death & Differentiation, 23, 369-379. https://doi.org/10.1038/cdd.2015.158
|
[35]
|
Zhang, Y., Li, M., Guo, Y., Liu, S. and Tao, Y. (2022) The Organelle-Specific Regulations and Epigenetic Regulators in Ferroptosis. Frontiers in Pharmacology, 13, Article ID: 905501. https://doi.org/10.3389/fphar.2022.905501
|
[36]
|
Wu, P., Zhang, X., Duan, D. and Zhao, L. (2023) Organelle-Specific Mechanisms in Crosstalk between Apoptosis and Ferroptosis. Oxidative Medicine and Cellular Longevity, 2023, Article ID: 3400147. https://doi.org/10.1155/2023/3400147
|
[37]
|
Chen, X., Kang, R., Kroemer, G. and Tang, D. (2021) Organelle-Specific Regulation of Ferroptosis. Cell Death & Differentiation, 28, 2843-2856. https://doi.org/10.1038/s41418-021-00859-z
|
[38]
|
Wang, C., Hua, S. and Song, L. (2023) Ferroptosis in Pulmonary Fibrosis: An Emerging Therapeutic Target. Frontiers in Physiology, 14, Article ID: 1205771. https://doi.org/10.3389/fphys.2023.1205771
|
[39]
|
Li, M., Li, M., Hou, Y., HE, H., Jiang, R., Wang, C., et al. (2023) Ferroptosis Triggers Airway Inflammation in Asthma. Therapeutic Advances in Respiratory Disease, 17, 16 p. https://doi.org/10.1177/17534666231208628
|
[40]
|
Liu, Y. and Wang, J. (2022) Ferroptosis, a Rising Force against Renal Fibrosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 7686956. https://doi.org/10.1155/2022/7686956
|
[41]
|
Huang, X., Song, Y., Wei, L., Guo, J., Xu, W. and Li, M. (2023) The Emerging Roles of Ferroptosis in Organ Fibrosis and Its Potential Therapeutic Effect. International Immunopharmacology, 116, Article ID: 109812. https://doi.org/10.1016/j.intimp.2023.109812
|
[42]
|
Steinbicker, A. and Muckenthaler, M. (2013) Out of Balance—Systemic Iron Homeostasis in Iron-Related Disorders. Nutrients, 5, 3034-3061. https://doi.org/10.3390/nu5083034
|
[43]
|
Li, Y., Huang, X., Wang, J., Huang, R. and Wan, D. (2020) Regulation of Iron Homeostasis and Related Diseases. Mediators of Inflammation, 2020, Article ID: 6062094. https://doi.org/10.1155/2020/6062094
|
[44]
|
Zhang, Y., Wan, D., Zhou, X., Long, C., Wu, X., Li, L., et al. (2017) Diurnal Variations in Iron Concentrations and Expression of Genes Involved in Iron Absorption and Metabolism in Pigs. Biochemical and Biophysical Research Communications, 490, 1210-1214. https://doi.org/10.1016/j.bbrc.2017.06.187
|
[45]
|
Mackenzie, B. and Garrick, M.D. (2005) Iron Imports. II. Iron Uptake at the Apical Membrane in the Intestine. American Journal of Physiology-Gastrointestinal and Liver Physiology, 289, G981-G986. https://doi.org/10.1152/ajpgi.00363.2005
|
[46]
|
McKie, A.T., Barrow, D., Latunde-Dada, G.O., Rolfs, A., Sager, G., Mudaly, E., et al. (2001) An Iron-Regulated Ferric Reductase Associated with the Absorption of Dietary Iron. Science, 291, 1755-1759. https://doi.org/10.1126/science.1057206
|
[47]
|
Adams, J.S. (2005) “Bound” to Work: The Free Hormone Hypothesis Revisited. Cell, 122, 647-649. https://doi.org/10.1016/j.cell.2005.08.024
|
[48]
|
Feng, H. and Stockwell, B.R. (2018) Unsolved Mysteries: How Does Lipid Peroxidation Cause Ferroptosis? PLOS Biology, 16, e2006203. https://doi.org/10.1371/journal.pbio.2006203
|
[49]
|
Theil, E.C. (2011) Iron Homeostasis and Nutritional Iron Deficiency1-3. The Journal of Nutrition, 141, 724S-728S. https://doi.org/10.3945/jn.110.127639
|
[50]
|
Hentze, M.W., Muckenthaler, M.U., Galy, B. and Camaschella, C. (2010) Two to Tango: Regulation of Mammalian Iron Metabolism. Cell, 142, 24-38. https://doi.org/10.1016/j.cell.2010.06.028
|
[51]
|
Colins, A., Gerdtzen, Z.P., Nuñez, M.T. and Salgado, J.C. (2017) Mathematical Modeling of Intestinal Iron Absorption Using Genetic Programming. PLOS ONE, 12, e0169601. https://doi.org/10.1371/journal.pone.0169601
|
[52]
|
Mancias, J.D., Wang, X., Gygi, S.P., Harper, J.W. and Kimmelman, A.C. (2014) Quantitative Proteomics Identifies NCOA4 as the Cargo Receptor Mediating Ferritinophagy. Nature, 509, 105-109. https://doi.org/10.1038/nature13148
|
[53]
|
Basak, T. and Kanwar, R.K. (2022) Iron Imbalance in Cancer: Intersection of Deficiency and Overload. Cancer Medicine, 11, 3837-3853. https://doi.org/10.1002/cam4.4761
|
[54]
|
Ma, L., Gholam Azad, M., Dharmasivam, M., Richardson, V., Quinn, R.J., Feng, Y., et al. (2021) Parkinson’s Disease: Alterations in Iron and Redox Biology as a Key to Unlock Therapeutic Strategies. Redox Biology, 41, Article ID: 101896. https://doi.org/10.1016/j.redox.2021.101896
|
[55]
|
Abe, I. and Lam, A.K. (2022) Assessment of Papillary Thyroid Carcinoma with Ultrasound Examination. In: Lam, A.K., Ed., Papillary Thyroid Carcinoma: Methods and Protocols, Springer US, 17-28. https://doi.org/10.1007/978-1-0716-2505-7_2
|
[56]
|
Yan, H., Zou, T., Tuo, Q., Xu, S., Li, H., Belaidi, A.A., et al. (2021) Ferroptosis: Mechanisms and Links with Diseases. Signal Transduction and Targeted Therapy, 6, Article No. 49. https://doi.org/10.1038/s41392-020-00428-9
|
[57]
|
Qiu, B., Zandkarimi, F., Bezjian, C.T., Reznik, E., Soni, R.K., Gu, W., et al. (2024) Phospholipids with Two Polyunsaturated Fatty Acyl Tails Promote Ferroptosis. Cell, 187, 1177-1190.e18. https://doi.org/10.1016/j.cell.2024.01.030
|
[58]
|
Rodencal, J., Kim, N., He, A., Li, V.L., Lange, M., He, J., et al. (2024) Sensitization of Cancer Cells to Ferroptosis Coincident with Cell Cycle Arrest. Cell Chemical Biology, 31, 234-248.e13. https://doi.org/10.1016/j.chembiol.2023.10.011
|
[59]
|
Chen, X., Kang, R., Kroemer, G. and Tang, D. (2021) Broadening Horizons: The Role of Ferroptosis in Cancer. Nature Reviews Clinical Oncology, 18, 280-296. https://doi.org/10.1038/s41571-020-00462-0
|
[60]
|
Liang, D., Minikes, A.M. and Jiang, X. (2022) Ferroptosis at the Intersection of Lipid Metabolism and Cellular Signaling. Molecular Cell, 82, 2215-2227. https://doi.org/10.1016/j.molcel.2022.03.022
|
[61]
|
Jiang, X., Stockwell, B.R. and Conrad, M. (2021) Ferroptosis: Mechanisms, Biology and Role in Disease. Nature Reviews Molecular Cell Biology, 22, 266-282. https://doi.org/10.1038/s41580-020-00324-8
|
[62]
|
Doll, S., Proneth, B., Tyurina, Y.Y., Panzilius, E., Kobayashi, S., Ingold, I., et al. (2016) ACSL4 Dictates Ferroptosis Sensitivity by Shaping Cellular Lipid Composition. Nature Chemical Biology, 13, 91-98. https://doi.org/10.1038/nchembio.2239
|
[63]
|
Kagan, V.E., Mao, G., Qu, F., Angeli, J.P.F., Doll, S., Croix, C.S., et al. (2016) Oxidized Arachidonic and Adrenic Pes Navigate Cells to Ferroptosis. Nature Chemical Biology, 13, 81-90. https://doi.org/10.1038/nchembio.2238
|
[64]
|
Ayala, A., Muñoz, M.F. and Argüelles, S. (2014) Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, Article ID: 360438. https://doi.org/10.1155/2014/360438
|
[65]
|
Barrera, G., Pizzimenti, S., Ciamporcero, E.S., Daga, M., Ullio, C., Arcaro, A., et al. (2015) Role of 4-Hydroxynonenal-Protein Adducts in Human Diseases. Antioxidants & Redox Signaling, 22, 1681-1702. https://doi.org/10.1089/ars.2014.6166
|
[66]
|
Li, J., Cao, F., Yin, H., Huang, Z., Lin, Z., Mao, N., et al. (2020) Ferroptosis: Past, Present and Future. Cell Death & Disease, 11, Article No. 88. https://doi.org/10.1038/s41419-020-2298-2
|
[67]
|
Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell, 156, 317-331. https://doi.org/10.1016/j.cell.2013.12.010
|
[68]
|
Han, Q., Ma, Y., Wang, H., Dai, Y., Chen, C., Liu, Y., et al. (2018) Resibufogenin Suppresses Colorectal Cancer Growth and Metastasis through Rip3-Mediated Necroptosis. Journal of Translational Medicine, 16, Article No. 201. https://doi.org/10.1186/s12967-018-1580-x
|
[69]
|
Friedmann Angeli, J.P., Schneider, M., Proneth, B., Tyurina, Y.Y., Tyurin, V.A., Hammond, V.J., et al. (2014) Inactivation of the Ferroptosis Regulator Gpx4 Triggers Acute Renal Failure in Mice. Nature Cell Biology, 16, 1180-1191. https://doi.org/10.1038/ncb3064
|
[70]
|
Bannai, S. and Kitamura, E. (1980) Transport Interaction of L-Cystine and L-Glutamate in Human Diploid Fibroblasts in Culture. Journal of Biological Chemistry, 255, 2372-2376. https://doi.org/10.1016/s0021-9258(19)85901-x
|
[71]
|
Sato, H., Tamba, M., Ishii, T. and Bannai, S. (1999) Cloning and Expression of a Plasma Membrane Cystine/Glutamate Exchange Transporter Composed of Two Distinct Proteins. Journal of Biological Chemistry, 274, 11455-11458. https://doi.org/10.1074/jbc.274.17.11455
|
[72]
|
Mandal, P.K., Seiler, A., Perisic, T., Kölle, P., Banjac Canak, A., Förster, H., et al. (2010) System Xc− and Thioredoxin Reductase 1 Cooperatively Rescue Glutathione Deficiency. Journal of Biological Chemistry, 285, 22244-22253. https://doi.org/10.1074/jbc.m110.121327
|
[73]
|
Chen, D., Chu, B., Yang, X., Liu, Z., Jin, Y., Kon, N., et al. (2021) iPLA2β-Mediated Lipid Detoxification Controls P53-Driven Ferroptosis Independent of Gpx4. Nature Communications, 12, Article No. 3644. https://doi.org/10.1038/s41467-021-23902-6
|
[74]
|
Xu, X., Zhang, X., Wei, C., Zheng, D., Lu, X., Yang, Y., et al. (2020) Targeting SLC7A11 Specifically Suppresses the Progression of Colorectal Cancer Stem Cells via Inducing Ferroptosis. European Journal of Pharmaceutical Sciences, 152, Article ID: 105450. https://doi.org/10.1016/j.ejps.2020.105450
|
[75]
|
Chen, L., Qiao, L., Bian, Y. and Sun, X. (2020) GDF15 Knockdown Promotes Erastin-Induced Ferroptosis by Decreasing SLC7A11 Expression. Biochemical and Biophysical Research Communications, 526, 293-299. https://doi.org/10.1016/j.bbrc.2020.03.079
|
[76]
|
Zheng, J. and Conrad, M. (2020) The Metabolic Underpinnings of Ferroptosis. Cell Metabolism, 32, 920-937. https://doi.org/10.1016/j.cmet.2020.10.011
|
[77]
|
Lu, J. and Holmgren, A. (2014) The Thioredoxin Antioxidant System. Free Radical Biology and Medicine, 66, 75-87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036
|
[78]
|
Mohammadi, F., Soltani, A., Ghahremanloo, A., Javid, H. and Hashemy, S.I. (2019) The Thioredoxin System and Cancer Therapy: A Review. Cancer Chemotherapy and Pharmacology, 84, 925-935. https://doi.org/10.1007/s00280-019-03912-4
|
[79]
|
Elangovan, P., et al. (2020) In-Vivo and In-Vitro Antioxidant Activity of Troxerutin on Nickel Induced Toxicity in Experimental Rats. Iranian Journal of Pharmaceutical Research, 19, 89-97.
|
[80]
|
Li, J., Hao, R., Zhang, J., Shan, B., Xu, X., Li, Y., et al. (2022) Proteomics Study on Immobilization of Pb(II) by Penicillium polonicum. Fungal Biology, 126, 449-460. https://doi.org/10.1016/j.funbio.2022.04.007
|
[81]
|
Zhang, L., Duan, D., Liu, Y., Ge, C., Cui, X., Sun, J., et al. (2013) Highly Selective Off-On Fluorescent Probe for Imaging Thioredoxin Reductase in Living Cells. Journal of the American Chemical Society, 136, 226-233. https://doi.org/10.1021/ja408792k
|
[82]
|
Tuladhar, A. and Rein, K.S. (2018) Manumycin a Is a Potent Inhibitor of Mammalian Thioredoxin Reductase-1 (TrxR-1). ACS Medicinal Chemistry Letters, 9, 318-322. https://doi.org/10.1021/acsmedchemlett.7b00489
|
[83]
|
Gan, B. (2021) Mitochondrial Regulation of Ferroptosis. Journal of Cell Biology, 220, e202105043. https://doi.org/10.1083/jcb.202105043
|
[84]
|
Gao, M., Yi, J., Zhu, J., Minikes, A.M., Monian, P., Thompson, C.B., et al. (2019) Role of Mitochondria in Ferroptosis. Molecular Cell, 73, 354-363.e3. https://doi.org/10.1016/j.molcel.2018.10.042
|
[85]
|
Friedman, J.R. and Nunnari, J. (2014) Mitochondrial Form and Function. Nature, 505, 335-343. https://doi.org/10.1038/nature12985
|
[86]
|
Li, C., Zhang, Y., Liu, J., Kang, R., Klionsky, D.J. and Tang, D. (2020) Mitochondrial DNA Stress Triggers Autophagy-Dependent Ferroptotic Death. Autophagy, 17, 948-960. https://doi.org/10.1080/15548627.2020.1739447
|
[87]
|
Li, Y., Chen, H., Yang, Q., Wan, L., Zhao, J., Wu, Y., et al. (2022) Increased Drp1 Promotes Autophagy and ESCC Progression by mtDNA Stress Mediated cGAS-STING Pathway. Journal of Experimental & Clinical Cancer Research, 41, Article No. 76. https://doi.org/10.1186/s13046-022-02262-z
|
[88]
|
Adedoyin, O., Boddu, R., Traylor, A., Lever, J.M., Bolisetty, S., George, J.F., et al. (2018) Heme Oxygenase-1 Mitigates Ferroptosis in Renal Proximal Tubule Cells. American Journal of Physiology-Renal Physiology, 314, F702-F714. https://doi.org/10.1152/ajprenal.00044.2017
|
[89]
|
Jiang, S., Li, H., Zhang, L., Mu, W., Zhang, Y., Chen, T., et al. (2024) Generic Diagramming Platform (GDP): A Comprehensive Database of High-Quality Biomedical Graphics. Nucleic Acids Research, 53, D1670-D1676. https://doi.org/10.1093/nar/gkae973
|
[90]
|
Ingold, I., Berndt, C., Schmitt, S., Doll, S., Poschmann, G., Buday, K., et al. (2018) Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell, 172, 409-422.e21. https://doi.org/10.1016/j.cell.2017.11.048
|
[91]
|
Brigelius-Flohé, R. and Maiorino, M. (2013) Glutathione Peroxidases. Biochimica et Biophysica Acta (BBA)—General Subjects, 1830, 3289-3303. https://doi.org/10.1016/j.bbagen.2012.11.020
|
[92]
|
Kawamukai, M. (2002) Biosynthesis, Bioproduction and Novel Roles of Ubiquinone. Journal of Bioscience and Bioengineering, 94, 511-517. https://doi.org/10.1016/s1389-1723(02)80188-8
|
[93]
|
Siemieniuk, E. and Skrzydlewska, E. (2005) Coenzyme Q10: Its Biosynthesis and Biological Significance in Animal Organisms and in Humans. Postępy Higieny i Medycyny Doświadczalnej (Online), 59, 150-159.
|
[94]
|
Eggeling, L. and Bott, M. (2015) A Giant Market and a Powerful Metabolism: L-Lysine Provided by Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 99, 3387-3394. https://doi.org/10.1007/s00253-015-6508-2
|
[95]
|
Li, C., Dong, X., Du, W., Shi, X., Chen, K., Zhang, W., et al. (2020) LKB1-AMPK Axis Negatively Regulates Ferroptosis by Inhibiting Fatty Acid Synthesis. Signal Transduction and Targeted Therapy, 5, Article No. 187. https://doi.org/10.1038/s41392-020-00297-2
|
[96]
|
Jiang, P., Ren, L., Zhi, L., Yu, Z., Lv, F., Xu, F., et al. (2021) Negative Regulation of AMPK Signaling by High Glucose via E3 Ubiquitin Ligase MG53. Molecular Cell, 81, 629-637.e5. https://doi.org/10.1016/j.molcel.2020.12.008
|
[97]
|
Koppula, P., Zhuang, L. and Gan, B. (2020) Cystine Transporter SLC7A11/xCT in Cancer: Ferroptosis, Nutrient Dependency, and Cancer Therapy. Protein & Cell, 12, 599-620. https://doi.org/10.1007/s13238-020-00789-5
|
[98]
|
Mohajan, S., Jaiswal, P.K., Vatanmakarian, M., Yousefi, H., Sankaralingam, S., Alahari, S.K., et al. (2021) Hippo Pathway: Regulation, Deregulation and Potential Therapeutic Targets in Cancer. Cancer Letters, 507, 112-123. https://doi.org/10.1016/j.canlet.2021.03.006
|
[99]
|
Wang, M., Dai, M., Wang, D., Xiong, W., Zeng, Z. and Guo, C. (2021) The Regulatory Networks of the Hippo Signaling Pathway in Cancer Development. Journal of Cancer, 12, 6216-6230. https://doi.org/10.7150/jca.62402
|
[100]
|
Yu, F., Yao, L., Li, F., Wang, C. and Ye, L. (2023) Releasing YAP Dysfunction-Caused Replicative Toxicity Rejuvenates Mesenchymal Stem Cells. Aging Cell, 22, e13913. https://doi.org/10.1111/acel.13913
|
[101]
|
Wu, J., Minikes, A.M., Gao, M., Bian, H., Li, Y., Stockwell, B.R., et al. (2019) Intercellular Interaction Dictates Cancer Cell Ferroptosis via NF2-YAP Signalling. Nature, 572, 402-406. https://doi.org/10.1038/s41586-019-1426-6
|
[102]
|
Yang, W., Ding, C.C., Sun, T., Rupprecht, G., Lin, C., Hsu, D., et al. (2019) The Hippo Pathway Effector TAZ Regulates Ferroptosis in Renal Cell Carcinoma. Cell Reports, 28, 2501-2508.e4. https://doi.org/10.1016/j.celrep.2019.07.107
|
[103]
|
Zhang, L., Liu, W., Liu, F., Wang, Q., Song, M., Yu, Q., et al. (2020) IMCA Induces Ferroptosis Mediated by SLC7A11 through the AMPK/mTOR Pathway in Colorectal Cancer. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 1675613. https://doi.org/10.1155/2020/1675613
|
[104]
|
Song, X., Zhu, S., Chen, P., Hou, W., Wen, Q., Liu, J., et al. (2018) AMPK-Mediated BECN1 Phosphorylation Promotes Ferroptosis by Directly Blocking System Xc− Activity. Current Biology, 28, 2388-2399.e5. https://doi.org/10.1016/j.cub.2018.05.094
|
[105]
|
Liu, M., Li, H., Wang, X., Xia, R., Li, X., Ma, Y., et al. (2022) TIGAR Drives Colorectal Cancer Ferroptosis Resistance through ROS/AMPK/SCD1 Pathway. Free Radical Biology and Medicine, 182, 219-231. https://doi.org/10.1016/j.freeradbiomed.2022.03.002
|
[106]
|
Kang, R., Zhu, S., Zeh, H.J., Klionsky, D.J. and Tang, D. (2018) BECN1 Is a New Driver of Ferroptosis. Autophagy, 14, 2173-2175. https://doi.org/10.1080/15548627.2018.1513758
|
[107]
|
Cheung, E.C., DeNicola, G.M., Nixon, C., Blyth, K., Labuschagne, C.F., Tuveson, D.A., et al. (2020) Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell, 37, 168-182.e4. https://doi.org/10.1016/j.ccell.2019.12.012
|
[108]
|
Ascenzi, F., De Vitis, C., Maugeri-Saccà, M., Napoli, C., Ciliberto, G. and Mancini, R. (2021) SCD1, Autophagy and Cancer: Implications for Therapy. Journal of Experimental & Clinical Cancer Research, 40, Article No. 265. https://doi.org/10.1186/s13046-021-02067-6
|
[109]
|
Sivinski, J., Zhang, D.D. and Chapman, E. (2021) Targeting NRF2 to Treat Cancer. Seminars in Cancer Biology, 76, 61-73. https://doi.org/10.1016/j.semcancer.2021.06.003
|
[110]
|
Wei, R., Zhao, Y., Wang, J., Yang, X., Li, S., Wang, Y., et al. (2021) Tagitinin C Induces Ferroptosis through PERK-Nrf2-HO-1 Signaling Pathway in Colorectal Cancer Cells. International Journal of Biological Sciences, 17, 2703-2717. https://doi.org/10.7150/ijbs.59404
|
[111]
|
Schmidlin, C.J., Shakya, A., Dodson, M., Chapman, E. and Zhang, D.D. (2021) The Intricacies of NRF2 Regulation in Cancer. Seminars in Cancer Biology, 76, 110-119. https://doi.org/10.1016/j.semcancer.2021.05.016
|
[112]
|
Majewska, E. and Szeliga, M. (2016) AKT/GSK3β Signaling in Glioblastoma. Neurochemical Research, 42, 918-924. https://doi.org/10.1007/s11064-016-2044-4
|
[113]
|
Farhat, F., Nofal, S., Raafat, E.M. and Eissa Ahmed, A.A. (2021) Akt/GSK3β/Nrf2/HO-1 Pathway Activation by Flurbiprofen Protects the Hippocampal Neurons in a Rat Model of Glutamate Excitotoxicity. Neuropharmacology, 196, Article ID: 108654. https://doi.org/10.1016/j.neuropharm.2021.108654
|
[114]
|
Xiao, P., Huang, H., Zhao, H., Liu, R., Sun, Z., Liu, Y., et al. (2024) Edaravone Dexborneol Protects against Cerebral Ischemia/Reperfusion-Induced Blood-Brain Barrier Damage by Inhibiting Ferroptosis via Activation of nrf-2/HO-1/GPX4 Signaling. Free Radical Biology and Medicine, 217, 116-125. https://doi.org/10.1016/j.freeradbiomed.2024.03.019
|
[115]
|
Shen, T., Yang, L., Zhang, Z., Yu, J., Dai, L., Gao, M., et al. (2019) KIF20A Affects the Prognosis of Bladder Cancer by Promoting the Proliferation and Metastasis of Bladder Cancer Cells. Disease Markers, 2019, Article ID: 4863182. https://doi.org/10.1155/2019/4863182
|
[116]
|
Palma, M., Riffo, E.N., Suganuma, T., Washburn, M.P., Workman, J.L., Pincheira, R., et al. (2019) Identification of a Nuclear Localization Signal and Importin Beta Members Mediating NUAK1 Nuclear Import Inhibited by Oxidative Stress. Journal of Cellular Biochemistry, 120, 16088-16107. https://doi.org/10.1002/jcb.28890
|
[117]
|
Cossa, G., Roeschert, I., Prinz, F., Baluapuri, A., Silveira Vidal, R., Schülein-Völk, C., et al. (2020) Localized Inhibition of Protein Phosphatase 1 by NUAK1 Promotes Spliceosome Activity and Reveals a Myc-Sensitive Feedback Control of Transcription. Molecular Cell, 77, 1322-1339.e11. https://doi.org/10.1016/j.molcel.2020.01.008
|
[118]
|
Zagórska, A., Deak, M., Campbell, D.G., Banerjee, S., Hirano, M., Aizawa, S., et al. (2010) New Roles for the LKB1-NUAK Pathway in Controlling Myosin Phosphatase Complexes and Cell Adhesion. Science Signaling, 3, ra25. https://doi.org/10.1126/scisignal.2000616
|
[119]
|
Port, J., Muthalagu, N., Raja, M., Ceteci, F., Monteverde, T., Kruspig, B., et al. (2018) Colorectal Tumors Require NUAK1 for Protection from Oxidative Stress. Cancer Discovery, 8, 632-647. https://doi.org/10.1158/2159-8290.cd-17-0533
|
[120]
|
Yang, L., Zhang, Y., Zhang, Y. and Fan, Z. (2023) Mechanism and Application of Ferroptosis in Colorectal Cancer. Biomedicine & Pharmacotherapy, 158, Article ID: 114102. https://doi.org/10.1016/j.biopha.2022.114102
|
[121]
|
Banerjee, S., Buhrlage, S.J., Huang, H., Deng, X., Zhou, W., Wang, J., et al. (2013) Characterization of WZ4003 and HTH-01-015 as Selective Inhibitors of the LKB1-Tumour-Suppressor-Activated NUAK Kinases. Biochemical Journal, 457, 215-225. https://doi.org/10.1042/bj20131152
|
[122]
|
Yang, H., Wang, X., Wang, C., Yin, F., Qu, L., Shi, C., et al. (2021) Optimization of WZ4003 as NUAK Inhibitors against Human Colorectal Cancer. European Journal of Medicinal Chemistry, 210, Article ID: 113080. https://doi.org/10.1016/j.ejmech.2020.113080
|
[123]
|
McMahon, M., Itoh, K., Yamamoto, M. and Hayes, J.D. (2003) Keap1-Dependent Proteasomal Degradation of Transcription Factor Nrf2 Contributes to the Negative Regulation of Antioxidant Response Element-Driven Gene Expression. Journal of Biological Chemistry, 278, 21592-21600. https://doi.org/10.1074/jbc.m300931200
|
[124]
|
Baird, L. and Yamamoto, M. (2020) The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Molecular and Cellular Biology, 40, e00099-20. https://doi.org/10.1128/mcb.00099-20
|
[125]
|
Dinkova-Kostova, A.T., Holtzclaw, W.D., Cole, R.N., Itoh, K., Wakabayashi, N., Katoh, Y., et al. (2002) Direct Evidence That Sulfhydryl Groups of Keap1 Are the Sensors Regulating Induction of Phase 2 Enzymes That Protect against Carcinogens and Oxidants. Proceedings of the National Academy of Sciences, 99, 11908-11913. https://doi.org/10.1073/pnas.172398899
|
[126]
|
Anandhan, A., Dodson, M., Shakya, A., Chen, J., Liu, P., Wei, Y., et al. (2023) NRF2 Controls Iron Homeostasis and Ferroptosis through HERC2 and VAMP8. Science Advances, 9, eade9585. https://doi.org/10.1126/sciadv.ade9585
|
[127]
|
Lee, J., Liu, L. and Levin, D.E. (2019) Stressing out or Stressing in: Intracellular Pathways for SAPK Activation. Current Genetics, 65, 417-421. https://doi.org/10.1007/s00294-018-0898-5
|
[128]
|
Wu, Q., Wu, W., Jacevic, V., Franca, T.C.C., Wang, X. and Kuca, K. (2020) Selective Inhibitors for JNK Signalling: A Potential Targeted Therapy in Cancer. Journal of Enzyme Inhibition and Medicinal Chemistry, 35, 574-583. https://doi.org/10.1080/14756366.2020.1720013
|
[129]
|
Li, H., Zhang, X., Tan, J., Sun, L., Xu, L., Jiang, Y., et al. (2018) Propofol Postconditioning Protects H9c2 Cells from Hypoxia/Reoxygenation Injury by Inducing Autophagy via the SAPK/JNK Pathway. Molecular Medicine Reports, 17, 4573-4580. https://doi.org/10.3892/mmr.2018.8424
|
[130]
|
Balaiya, S., Murthy, R.K. and Chalam, K.V. (2013) Resveratrol Inhibits Proliferation of Hypoxic Choroidal Vascular Endothelial Cells. Molecular Vision, 19, 2385-2392.
|
[131]
|
Sakon, S. (2003) NF-kappaB Inhibits TNF-Induced Accumulation of ROS That Mediate Prolonged MAPK Activation and Necrotic Cell Death. The EMBO Journal, 22, 3898-3909. https://doi.org/10.1093/emboj/cdg379
|
[132]
|
Pham, C.G., Bubici, C., Zazzeroni, F., Papa, S., Jones, J., Alvarez, K., et al. (2004) Ferritin Heavy Chain Upregulation by NF-kappaB Inhibits TNFalpha-Induced Apoptosis by Suppressing Reactive Oxygen Species. Cell, 119, 529-542. https://doi.org/10.1016/j.cell.2004.10.017
|
[133]
|
Tam, S.Y. and Law, H.K. (2021) JNK in Tumor Microenvironment: Present Findings and Challenges in Clinical Translation. Cancers, 13, Article No. 2196. https://doi.org/10.3390/cancers13092196
|
[134]
|
Raj, N. and Bam, R. (2019) Reciprocal Crosstalk between YAP1/Hippo Pathway and the p53 Family Proteins: Mechanisms and Outcomes in Cancer. Frontiers in Cell and Developmental Biology, 7, Article No. 159. https://doi.org/10.3389/fcell.2019.00159
|
[135]
|
Shi, Y., Nikulenkov, F., Zawacka-Pankau, J., Li, H., Gabdoulline, R., Xu, J., et al. (2014) ROS-Dependent Activation of JNK Converts p53 into an Efficient Inhibitor of Oncogenes Leading to Robust Apoptosis. Cell Death & Differentiation, 21, 612-623. https://doi.org/10.1038/cdd.2013.186
|
[136]
|
Keren, A., Tamir, Y. and Bengal, E. (2006) The p38 MAPK Signaling Pathway: A Major Regulator of Skeletal Muscle Development. Molecular and Cellular Endocrinology, 252, 224-230. https://doi.org/10.1016/j.mce.2006.03.017
|
[137]
|
Zhao, X. and Chen, F. (2021) Propofol Induces the Ferroptosis of Colorectal Cancer Cells by Downregulating STAT3 Expression. Oncology Letters, 22, Article No. 767. https://doi.org/10.3892/ol.2021.13028
|
[138]
|
Bhattacharya, S., Ray, R.M. and Johnson, L.R. (2005) STAT3-Mediated Transcription of Bcl-2, Mcl-1 and c-IAP2 Prevents Apoptosis in Polyamine-Depleted Cells. Biochemical Journal, 392, 335-344. https://doi.org/10.1042/bj20050465
|
[139]
|
Kovalovich, K., Li, W., DeAngelis, R., Greenbaum, L.E., Ciliberto, G. and Taub, R. (2001) Interleukin-6 Protects against FAS-Mediated Death by Establishing a Critical Level of Anti-Apoptotic Hepatic Proteins FLIP, Bcl-2, and Bcl-xL. Journal of Biological Chemistry, 276, 26605-26613. https://doi.org/10.1074/jbc.m100740200
|
[140]
|
Zhang, W., Gong, M., Zhang, W., Mo, J., Zhang, S., Zhu, Z., et al. (2022) Thiostrepton Induces Ferroptosis in Pancreatic Cancer Cells through STAT3/GPX4 Signalling. Cell Death & Disease, 13, Article No. 630. https://doi.org/10.1038/s41419-022-05082-3
|
[141]
|
Vu, N.T., et al. (2022) Ceramide Kinase Inhibition Drives Ferroptosis and Sensitivity to Cisplatin in Mutant KRAS Lung Cancer by Dysregulating VDAC-Mediated Mitochondria Function. Molecular Cancer Research, 20, 1429-1442. https://doi.org/10.1158/1541-7786.MCR-22-0085
|
[142]
|
Tian, X., Li, S. and Ge, G. (2021) Apatinib Promotes Ferroptosis in Colorectal Cancer Cells by Targeting ELOVL6/ACSL4 Signaling. Cancer Management and Research, 13, 1333-1342. https://doi.org/10.2147/cmar.s274631
|
[143]
|
Yuan, H., Li, X., Zhang, X., Kang, R. and Tang, D. (2016) Identification of ACSL4 as a Biomarker and Contributor of Ferroptosis. Biochemical and Biophysical Research Communications, 478, 1338-1343. https://doi.org/10.1016/j.bbrc.2016.08.124
|
[144]
|
Wang, Y., Chen, H. and Wei, X. (2021) Circ_0007142 Downregulates miR-874-3p-Mediated GDPD5 on Colorectal Cancer Cells. European Journal of Clinical Investigation, 51, e13541. https://doi.org/10.1111/eci.13541
|
[145]
|
Sbodio, J.I., Snyder, S.H. and Paul, B.D. (2018) Regulators of the Transsulfuration Pathway. British Journal of Pharmacology, 176, 583-593. https://doi.org/10.1111/bph.14446
|
[146]
|
McBean, G.J. (2011) The Transsulfuration Pathway: A Source of Cysteine for Glutathione in Astrocytes. Amino Acids, 42, 199-205. https://doi.org/10.1007/s00726-011-0864-8
|
[147]
|
Hayano, M., Yang, W.S., Corn, C.K., Pagano, N.C. and Stockwell, B.R. (2015) Loss of Cysteinyl-tRNA Synthetase (CARS) Induces the Transsulfuration Pathway and Inhibits Ferroptosis Induced by Cystine Deprivation. Cell Death & Differentiation, 23, 270-278. https://doi.org/10.1038/cdd.2015.93
|
[148]
|
Viswanathan, V.S., Ryan, M.J., Dhruv, H.D., Gill, S., Eichhoff, O.M., Seashore-Ludlow, B., et al. (2017) Dependency of a Therapy-Resistant State of Cancer Cells on a Lipid Peroxidase Pathway. Nature, 547, 453-457. https://doi.org/10.1038/nature23007
|
[149]
|
Picón, D.F. and Skouta, R. (2023) Unveiling the Therapeutic Potential of Squalene Synthase: Deciphering Its Biochemical Mechanism, Disease Implications, and Intriguing Ties to Ferroptosis. Cancers, 15, Article No. 3731. https://doi.org/10.3390/cancers15143731
|
[150]
|
Yang, Y., Jan, Y., Liu, Y., Yang, C., Su, C., Chang, Y., et al. (2014) Squalene Synthase Induces Tumor Necrosis Factor Receptor 1 Enrichment in Lipid Rafts to Promote Lung Cancer Metastasis. American Journal of Respiratory and Critical Care Medicine, 190, 675-687. https://doi.org/10.1164/rccm.201404-0714oc
|
[151]
|
Yan, H., et al. (2023) Ferroptosis in Colorectal Cancer: A Future Target? British Journal of Cancer, 128, 1439-1451. https://doi.org/10.1038/s41416-023-02149-6
|
[152]
|
Yang, W.S., Kim, K.J., Gaschler, M.M., Patel, M., Shchepinov, M.S. and Stockwell, B.R. (2016) Peroxidation of Polyunsaturated Fatty Acids by Lipoxygenases Drives Ferroptosis. Proceedings of the National Academy of Sciences, 113, E4966-E4975. https://doi.org/10.1073/pnas.1603244113
|
[153]
|
Freitas, F.P., Alborzinia, H., dos Santos, A.F., Nepachalovich, P., Pedrera, L., Zilka, O., et al. (2024) 7-Dehydrocholesterol Is an Endogenous Suppressor of Ferroptosis. Nature, 626, 401-410. https://doi.org/10.1038/s41586-023-06878-9
|
[154]
|
Stockwell, B.R. (2022) Ferroptosis Turns 10: Emerging Mechanisms, Physiological Functions, and Therapeutic Applications. Cell, 185, 2401-2421. https://doi.org/10.1016/j.cell.2022.06.003
|
[155]
|
Kraft, V.A.N., Bezjian, C.T., Pfeiffer, S., Ringelstetter, L., Müller, C., Zandkarimi, F., et al. (2019) GTP Cyclohydrolase 1/tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Central Science, 6, 41-53. https://doi.org/10.1021/acscentsci.9b01063
|
[156]
|
Nakamura, T., Hipp, C., Santos Dias Mourão, A., Borggräfe, J., Aldrovandi, M., Henkelmann, B., et al. (2023) Phase Separation of FSP1 Promotes Ferroptosis. Nature, 619, 371-377. https://doi.org/10.1038/s41586-023-06255-6
|
[157]
|
Hemmrich, K., Suschek, C.V., Lerzynski, G. and Kolb-Bachofen, V. (2003) iNOS Activity Is Essential for Endothelial Stress Gene Expression Protecting against Oxidative Damage. Journal of Applied Physiology, 95, 1937-1946. https://doi.org/10.1152/japplphysiol.00419.2003
|
[158]
|
Zeitler, L., Fiore, A., Meyer, C., Russier, M., Zanella, G., Suppmann, S., et al. (2021) Anti-Ferroptotic Mechanism of IL4i1-Mediated Amino Acid Metabolism. eLife, 10, e64806. https://doi.org/10.7554/elife.64806
|
[159]
|
Mishima, E., Ito, J., Wu, Z., Nakamura, T., Wahida, A., Doll, S., et al. (2022) A Non-Canonical Vitamin K Cycle Is a Potent Ferroptosis Suppressor. Nature, 608, 778-783. https://doi.org/10.1038/s41586-022-05022-3
|
[160]
|
Doll, S., Freitas, F.P., Shah, R., Aldrovandi, M., da Silva, M.C., Ingold, I., et al. (2019) FSP1 Is a Glutathione-Independent Ferroptosis Suppressor. Nature, 575, 693-698. https://doi.org/10.1038/s41586-019-1707-0
|
[161]
|
Liang, D., Feng, Y., Zandkarimi, F., Wang, H., Zhang, Z., Kim, J., et al. (2023) Ferroptosis Surveillance Independent of GPX4 and Differentially Regulated by Sex Hormones. Cell, 186, 2748-2764.e22. https://doi.org/10.1016/j.cell.2023.05.003
|
[162]
|
Jin, H., Zhu, M., Zhang, D., Liu, X., Guo, Y., Xia, L., et al. (2023) B7H3 Increases Ferroptosis Resistance by Inhibiting Cholesterol Metabolism in Colorectal Cancer. Cancer Science, 114, 4225-4236. https://doi.org/10.1111/cas.15944
|
[163]
|
Aksan, A., Farrag, K., Aksan, S., Schroeder, O. and Stein, J. (2021) Flipside of the Coin: Iron Deficiency and Colorectal Cancer. Frontiers in Immunology, 12, Article ID: 635899. https://doi.org/10.3389/fimmu.2021.635899
|
[164]
|
Sun, J., et al. (2021) Dichloroacetate Attenuates the Stemness of Colorectal Cancer Cells via Trigerring Ferroptosis through Sequestering Iron in Lysosomes. Environmental Toxicology, 36, 520-529. https://doi.org/10.1002/tox.23057
|
[165]
|
Wang, S., Cheng, K., Chen, K., Xu, C., Ma, P., Dang, G., et al. (2022) Nanoparticle-Based Medicines in Clinical Cancer Therapy. Nano Today, 45, Article ID: 101512. https://doi.org/10.1016/j.nantod.2022.101512
|
[166]
|
Mundekkad, D. and Cho, W.C. (2022) Nanoparticles in Clinical Translation for Cancer Therapy. International Journal of Molecular Sciences, 23, Article No. 1685. https://doi.org/10.3390/ijms23031685
|
[167]
|
Yang, J., Mo, J., Dai, J., Ye, C., Cen, W., Zheng, X., et al. (2021) Cetuximab Promotes RSL3-Induced Ferroptosis by Suppressing the Nrf2/HO-1 Signalling Pathway in KRAS Mutant Colorectal Cancer. Cell Death & Disease, 12, Article No. 1079. https://doi.org/10.1038/s41419-021-04367-3
|
[168]
|
Chen, P., Li, X., Zhang, R., Liu, S., Xiang, Y., Zhang, M., et al. (2020) Combinative Treatment of β-Elemene and Cetuximab Is Sensitive to KRAS Mutant Colorectal Cancer Cells by Inducing Ferroptosis and Inhibiting Epithelial-Mesenchymal Transformation. Theranostics, 10, 5107-5119. https://doi.org/10.7150/thno.44705
|
[169]
|
Chen, M., Tan, A. and Li, J. (2022) Curcumin Represses Colorectal Cancer Cell Proliferation by Triggering Ferroptosis via PI3K/Akt/mTOR Signaling. Nutrition and Cancer, 75, 726-733. https://doi.org/10.1080/01635581.2022.2139398
|
[170]
|
Ochiai, T., Nishimura, K., Watanabe, T., Kitajima, M., Nakatani, A., Sato, T., et al. (2014) Mechanism Underlying the Transient Increase of Serum Iron during FOLFOX/FOLFIRI Therapy. Molecular and Clinical Oncology, 2, 968-972. https://doi.org/10.3892/mco.2014.385
|
[171]
|
Yan, H., Talty, R., Jain, A., Cai, Y., Zheng, J., Shen, X., et al. (2023) Discovery of Decreased Ferroptosis in Male Colorectal Cancer Patients with KRAS Mutations. Redox Biology, 62, Article ID: 102699. https://doi.org/10.1016/j.redox.2023.102699
|
[172]
|
Hu, J., Li, J., Dong, Y., Yue, X., Wang, W., Zhang, H., et al. (2025) Identification of Ferroptosis Related Genes and Subtypes in Colorectal Cancer. Scientific Reports, 15, Article No. 22717. https://doi.org/10.1038/s41598-025-08901-7
|