[1]
|
Feigin, V.L., Stark, B.A., Johnson, C.O., Roth, G.A., Bisignano, C., Abady, G.G., et al. (2021) Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet Neurology, 20, 795-820. https://doi.org/10.1016/s1474-4422(21)00252-0
|
[2]
|
Zhou, M., Wang, H., Zeng, X., Yin, P., Zhu, J., Chen, W., et al. (2019) Mortality, Morbidity, and Risk Factors in China and Its Provinces, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 394, 1145-1158. https://doi.org/10.1016/s0140-6736(19)30427-1
|
[3]
|
Campbell, B.C.V., De Silva, D.A., Macleod, M.R., Coutts, S.B., Schwamm, L.H., Davis, S.M., et al. (2019) Ischaemic Stroke. Nature Reviews Disease Primers, 5, Article No. 70. https://doi.org/10.1038/s41572-019-0118-8
|
[4]
|
Campbell, B.C.V. and Khatri, P. (2020) Stroke. The Lancet, 396, 129-142. https://doi.org/10.1016/s0140-6736(20)31179-x
|
[5]
|
Tuo, Q., Zhang, S. and Lei, P. (2021) Mechanisms of Neuronal Cell Death in Ischemic Stroke and Their Therapeutic Implications. Medicinal Research Reviews, 42, 259-305. https://doi.org/10.1002/med.21817
|
[6]
|
Xu, D., Kong, T., Shao, Z., Liu, M., Zhang, R., Zhang, S., et al. (2021) Orexin—A Alleviates Astrocytic Apoptosis and Inflammation via Inhibiting OX1R-Mediated NF-κB and MAPK Signaling Pathways in Cerebral Ischemia/Reperfusion Injury. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1867, Article ID: 166230. https://doi.org/10.1016/j.bbadis.2021.166230
|
[7]
|
Zhang, L., Song, H., Guo, Y., Fan, B., Huang, Y., Mao, X., et al. (2020) Benefit-Risk Assessment of Dietary Selenium and Its Associated Metals Intake in China (2017-2019): Is Current Selenium-Rich Agro-Food Safe Enough? Journal of Hazardous Materials, 398, Article ID: 123224. https://doi.org/10.1016/j.jhazmat.2020.123224
|
[8]
|
Zhao, B., Zhou, S., Wu, X., Xing, K., Zhu, Y., Hu, L., et al. (2018) Distribution and Accumulation of Selenium in Plants and Health Risk Assessment from a Selenium-Rich Area in China. Polish Journal of Environmental Studies, 27, 2873-2882. https://doi.org/10.15244/pjoes/80693
|
[9]
|
Huang, X., Dong, Y., Li, T., Xiong, W., Zhang, X., Wang, P., et al. (2021) Dietary Selenium Regulates microRNAs in Metabolic Disease: Recent Progress. Nutrients, 13, Article 1527. https://doi.org/10.3390/nu13051527
|
[10]
|
Avery, J. and Hoffmann, P. (2018) Selenium, Selenoproteins, and Immunity. Nutrients, 10, Article 1203. https://doi.org/10.3390/nu10091203
|
[11]
|
Solovyev, N., Drobyshev, E., Bjørklund, G., Dubrovskii, Y., Lysiuk, R. and Rayman, M.P. (2018) Selenium, Selenoprotein P, and Alzheimer’s Disease: Is There a Link? Free Radical Biology and Medicine, 127, 124-133. https://doi.org/10.1016/j.freeradbiomed.2018.02.030
|
[12]
|
Pyka, P., Garbo, S., Fioravanti, R., Jacob, C., Hittinger, M., Handzlik, J., et al. (2024) Selenium-Containing Compounds: A New Hope for Innovative Treatments in Alzheimer’s Disease and Parkinson’s Disease. Drug Discovery Today, 29, Article ID: 104062. https://doi.org/10.1016/j.drudis.2024.104062
|
[13]
|
Ye, R., Huang, J., Wang, Z., Chen, Y. and Dong, Y. (2022) The Role and Mechanism of Essential Selenoproteins for Homeostasis. Antioxidants, 11, Article 973. https://doi.org/10.3390/antiox11050973
|
[14]
|
Schweizer, U., Wirth, E.K., Klopstock, T., Hölter, S.M., Becker, L., Moskovitz, J., et al. (2022) Seizures, Ataxia and Parvalbumin-Expressing Interneurons Respond to Selenium Supply in Selenop-Deficient Mice. Redox Biology, 57, Article ID: 102490. https://doi.org/10.1016/j.redox.2022.102490
|
[15]
|
Ouyang, P., Cai, Z., Peng, J., Lin, S., Chen, X., Chen, C., et al. (2024) Selenok-Dependent CD36 Palmitoylation Regulates Microglial Functions and Aβ Phagocytosis. Redox Biology, 70, Article ID: 103064. https://doi.org/10.1016/j.redox.2024.103064
|
[16]
|
Weekley, C.M. and Harris, H.H. (2013) Which Form Is That? The Importance of Selenium Speciation and Metabolism in the Prevention and Treatment of Disease. Chemical Society Reviews, 42, 8870-8894. https://doi.org/10.1039/c3cs60272a
|
[17]
|
Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Sarkar, S., Ahmad, Z., et al. (2021) Selenium Biofortification: Roles, Mechanisms, Responses and Prospects. Molecules, 26, Article 881. https://doi.org/10.3390/molecules26040881
|
[18]
|
Schomburg, L. (2022) Selenoprotein P—Selenium Transport Protein, Enzyme and Biomarker of Selenium Status. Free Radical Biology and Medicine, 191, 150-163. https://doi.org/10.1016/j.freeradbiomed.2022.08.022
|
[19]
|
Labunskyy, V.M., Hatfield, D.L. and Gladyshev, V.N. (2014) Selenoproteins: Molecular Pathways and Physiological Roles. Physiological Reviews, 94, 739-777. https://doi.org/10.1152/physrev.00039.2013
|
[20]
|
Yang, W.S. and Stockwell, B.R. (2016) Ferroptosis: Death by Lipid Peroxidation. Trends in Cell Biology, 26, 165-176. https://doi.org/10.1016/j.tcb.2015.10.014
|
[21]
|
Peeler, J.C. and Weerapana, E. (2019) Chemical Biology Approaches to Interrogate the Selenoproteome. Accounts of Chemical Research, 52, 2832-2840. https://doi.org/10.1021/acs.accounts.9b00379
|
[22]
|
Fradejas-Villar, N. (2018) Consequences of Mutations and Inborn Errors of Selenoprotein Biosynthesis and Functions. Free Radical Biology and Medicine, 127, 206-214. https://doi.org/10.1016/j.freeradbiomed.2018.04.572
|
[23]
|
Santesmasses, D., Mariotti, M. and Gladyshev, V.N. (2020) Bioinformatics of Selenoproteins. Antioxidants & Redox Signaling, 33, 525-536. https://doi.org/10.1089/ars.2020.8044
|
[24]
|
Handy, D.E. and Loscalzo, J. (2022) The Role of Glutathione Peroxidase-1 in Health and Disease. Free Radical Biology and Medicine, 188, 146-161. https://doi.org/10.1016/j.freeradbiomed.2022.06.004
|
[25]
|
Brigelius-Flohé, R. and Flohé, L. (2020) Regulatory Phenomena in the Glutathione Peroxidase Superfamily. Antioxidants & Redox Signaling, 33, 498-516. https://doi.org/10.1089/ars.2019.7905
|
[26]
|
Schweizer, U., Bohleber, S., Zhao, W. and Fradejas-Villar, N. (2021) The Neurobiology of Selenium: Looking Back and to the Future. Frontiers in Neuroscience, 15, Article 652099. https://doi.org/10.3389/fnins.2021.652099
|
[27]
|
Pei, J., Pan, X., Wei, G. and Hua, Y. (2023) Research Progress of Glutathione Peroxidase Family (GPX) in Redoxidation. Frontiers in Pharmacology, 14, Article 1147414. https://doi.org/10.3389/fphar.2023.1147414
|
[28]
|
Weaver, K. and Skouta, R. (2022) The Selenoprotein Glutathione Peroxidase 4: From Molecular Mechanisms to Novel Therapeutic Opportunities. Biomedicines, 10, Article 891. https://doi.org/10.3390/biomedicines10040891
|
[29]
|
Jiang, X., Stockwell, B.R. and Conrad, M. (2021) Ferroptosis: Mechanisms, Biology and Role in Disease. Nature Reviews Molecular Cell Biology, 22, 266-282. https://doi.org/10.1038/s41580-020-00324-8
|
[30]
|
Conrad, M. and Proneth, B. (2020) Selenium: Tracing Another Essential Element of Ferroptotic Cell Death. Cell Chemical Biology, 27, 409-419. https://doi.org/10.1016/j.chembiol.2020.03.012
|
[31]
|
Liu, Y., Wan, Y., Jiang, Y., Zhang, L. and Cheng, W. (2023) GPX4: The Hub of Lipid Oxidation, Ferroptosis, Disease and Treatment. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1878, Article ID: 188890. https://doi.org/10.1016/j.bbcan.2023.188890
|
[32]
|
Horn, T., Adel, S., Schumann, R., Sur, S., Kakularam, K.R., Polamarasetty, A., et al. (2015) Evolutionary Aspects of Lipoxygenases and Genetic Diversity of Human Leukotriene Signaling. Progress in Lipid Research, 57, 13-39. https://doi.org/10.1016/j.plipres.2014.11.001
|
[33]
|
Ding, K., Liu, C., Li, L., Yang, M., Jiang, N., Luo, S., et al. (2023) Acyl-CoA Synthase ACSL4: An Essential Target in Ferroptosis and Fatty Acid Metabolism. Chinese Medical Journal, 136, 2521-2537. https://doi.org/10.1097/cm9.0000000000002533
|
[34]
|
Ye, L.F. and Stockwell, B.R. (2017) Transforming Lipoxygenases: Pe-Specific Enzymes in Disguise. Cell, 171, 501-502. https://doi.org/10.1016/j.cell.2017.10.006
|
[35]
|
Shah, R., Shchepinov, M.S. and Pratt, D.A. (2018) Resolving the Role of Lipoxygenases in the Initiation and Execution of Ferroptosis. ACS Central Science, 4, 387-396. https://doi.org/10.1021/acscentsci.7b00589
|
[36]
|
Cui, Y., Zhang, Y., Zhao, X., Shao, L., Liu, G., Sun, C., et al. (2021) ACSL4 Exacerbates Ischemic Stroke by Promoting Ferroptosis-Induced Brain Injury and Neuroinflammation. Brain, Behavior, and Immunity, 93, 312-321. https://doi.org/10.1016/j.bbi.2021.01.003
|
[37]
|
Gao, M., Yi, J., Zhu, J., Minikes, A.M., Monian, P., Thompson, C.B., et al. (2019) Role of Mitochondria in Ferroptosis. Molecular Cell, 73, 354-363.e3. https://doi.org/10.1016/j.molcel.2018.10.042
|
[38]
|
Ingold, I., Berndt, C., Schmitt, S., Doll, S., Poschmann, G., Buday, K., et al. (2018) Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell, 172, 409-422.e21. https://doi.org/10.1016/j.cell.2017.11.048
|
[39]
|
Zhang, M., Liu, Q., Meng, H., Duan, H., Liu, X., Wu, J., et al. (2024) Ischemia-Reperfusion Injury: Molecular Mechanisms and Therapeutic Targets. Signal Transduction and Targeted Therapy, 9, Article No. 12. https://doi.org/10.1038/s41392-023-01688-x
|
[40]
|
Feng, S., Yang, Q., Liu, M., Li, W., Yuan, W., Zhang, S., et al. (2011) Edaravone for Acute Ischaemic Stroke. Cochrane Database of Systematic Reviews, No. 12, CD007230. https://doi.org/10.1002/14651858.cd007230.pub2
|
[41]
|
Wen, Y., Huang, S., Zhang, Y., Zhang, H., Zhou, L., Li, D., et al. (2019) Associations of Multiple Plasma Metals with the Risk of Ischemic Stroke: A Case-Control Study. Environment International, 125, 125-134. https://doi.org/10.1016/j.envint.2018.12.037
|
[42]
|
Wang, Z., Hu, S., Song, Y., Liu, L., Huang, Z., Zhou, Z., et al. (2022) Association between Plasma Selenium and Risk of Ischemic Stroke: A Community-Based, Nested, and Case-Control Study. Frontiers in Nutrition, 9, Article 1001922. https://doi.org/10.3389/fnut.2022.1001922
|
[43]
|
Zhao, K., Zhang, Y. and Sui, W. (2023) Association between Blood Selenium Levels and Stroke: A Study Based on the NHANES (2011-2018). Biological Trace Element Research, 202, 25-33. https://doi.org/10.1007/s12011-023-03649-5
|
[44]
|
Shi, W., Su, L., Wang, J., Wang, F., Liu, X. and Dou, J. (2022) Correlation between Dietary Selenium Intake and Stroke in the National Health and Nutrition Examination Survey 2003-2018. Annals of Medicine, 54, 1395-1402. https://doi.org/10.1080/07853890.2022.2058079
|
[45]
|
Zahia, T., Yona, L., Anne-Laure, B. and Laurent, C. (2014) Selective Up-Regulation of Human Selenoproteins in Response to Oxidative Stress. Free Radical Biology and Medicine, 75, S25. https://doi.org/10.1016/j.freeradbiomed.2014.10.745
|
[46]
|
Varlamova, E.G., Turovsky, E.A. and Blinova, E.V. (2021) Therapeutic Potential and Main Methods of Obtaining Selenium Nanoparticles. International Journal of Molecular Sciences, 22, Article 10808. https://doi.org/10.3390/ijms221910808
|
[47]
|
Shi, Y., Han, L., Zhang, X., Xie, L., Pan, P. and Chen, F. (2022) Selenium Alleviates Cerebral Ischemia/Reperfusion Injury by Regulating Oxidative Stress, Mitochondrial Fusion and Ferroptosis. Neurochemical Research, 47, 2992-3002. https://doi.org/10.1007/s11064-022-03643-8
|
[48]
|
Yang, B., Li, Y., Ma, Y., Zhang, X., Yang, L., Shen, X., et al. (2021) Selenium Attenuates Ischemia/Reperfusion Injury-Induced Damage to the Bloodbrain Barrier in Hyperglycemia through PI3K/AKT/mTOR Pathway-Mediated Autophagy Inhibition. International Journal of Molecular Medicine, 48, Article No. 178. https://doi.org/10.3892/ijmm.2021.5011
|
[49]
|
Zhu, M., Wang, G., Wang, H., Guo, Y., Song, P., Xu, J., et al. (2019) Amorphous Nano-Selenium Quantum Dots Improve Endothelial Dysfunction in Rats and Prevent Atherosclerosis in Mice through Na+/H+ Exchanger 1 Inhibition. Vascular Pharmacology, 115, 26-32. https://doi.org/10.1016/j.vph.2019.01.005
|
[50]
|
Umar, M., Rehman, Y., Ambreen, S., Mumtaz, S.M., Shaququzzaman, M., Alam, M.M., et al. (2024) Innovative Approaches to Alzheimer’s Therapy: Harnessing the Power of Heterocycles, Oxidative Stress Management, and Nanomaterial Drug Delivery System. Ageing Research Reviews, 97, Article ID: 102298. https://doi.org/10.1016/j.arr.2024.102298
|
[51]
|
Amani, H., Habibey, R., Shokri, F., Hajmiresmail, S.J., Akhavan, O., Mashaghi, A., et al. (2019) Selenium Nanoparticles for Targeted Stroke Therapy through Modulation of Inflammatory and Metabolic Signaling. Scientific Reports, 9, Article No. 6044. https://doi.org/10.1038/s41598-019-42633-9
|
[52]
|
Varlamova, E.G., Khabatova, V.V., Gudkov, S.V., Plotnikov, E.Y. and Turovsky, E.A. (2022) Cytoprotective Properties of a New Nanocomplex of Selenium with Taxifolin in the Cells of the Cerebral Cortex Exposed to Ischemia/Reoxygenation. Pharmaceutics, 14, Article 2477. https://doi.org/10.3390/pharmaceutics14112477
|
[53]
|
Lopes Junior, E., Leite, H.P. and Konstantyner, T. (2019) Selenium and Selenoproteins: From Endothelial Cytoprotection to Clinical Outcomes. Translational Research, 208, 85-104. https://doi.org/10.1016/j.trsl.2019.01.004
|
[54]
|
Zhang, Y., Cartland, S.P., Henriquez, R., Patel, S., Gammelgaard, B., Flouda, K., et al. (2020) Selenomethionine Supplementation Reduces Lesion Burden, Improves Vessel Function and Modulates the Inflammatory Response within the Setting of Atherosclerosis. Redox Biology, 29, Article ID: 101409. https://doi.org/10.1016/j.redox.2019.101409
|
[55]
|
Swart, R., Schutte, A.E., van Rooyen, J.M. and Mels, C.M.C. (2018) Selenium and Large Artery Structure and Function: A 10-Year Prospective Study. European Journal of Nutrition, 58, 3313-3323. https://doi.org/10.1007/s00394-018-1875-y
|
[56]
|
Gać, P., Urbanik, D., Pawlas, N., Poręba, M., Martynowicz, H., Prokopowicz, A., et al. (2020) Total Antioxidant Status Reduction Conditioned by a Serum Selenium Concentration Decrease as a Mechanism of the Ultrasonographically Measured Brachial Artery Dilatation Impairment in Patients with Arterial Hypertension. Environmental Toxicology and Pharmacology, 75, Article ID: 103332. https://doi.org/10.1016/j.etap.2020.103332
|
[57]
|
Zheng, Z., Liu, L., Zhou, K., Ding, L., Zeng, J. and Zhang, W. (2020) Anti-Oxidant and Anti-Endothelial Dysfunctional Properties of Nano-Selenium in Vitro and in Vivo of Hyperhomocysteinemic Rats. International Journal of Nanomedicine, 15, 4501-4521. https://doi.org/10.2147/ijn.s255392
|
[58]
|
Zhang, Z., Wang, R., He, P., Dai, Y., Duan, S., Li, M., et al. (2023) Study on the Correlation and Interaction between Metals and Dyslipidemia: A Case-Control Study in Chinese Community-Dwelling Elderly. Environmental Science and Pollution Research, 30, 105756-105769. https://doi.org/10.1007/s11356-023-29695-z
|
[59]
|
Kelishadi, M.R., Ashtary-Larky, D., Davoodi, S.H., Clark, C.C.T. and Asbaghi, O. (2022) The Effects of Selenium Supplementation on Blood Lipids and Blood Pressure in Adults: A Systematic Review and Dose-Response Meta-Analysis of Randomized Control Trials. Journal of Trace Elements in Medicine and Biology, 74, Article ID: 127046. https://doi.org/10.1016/j.jtemb.2022.127046
|
[60]
|
Friedmann Angeli, J.P. and Conrad, M. (2018) Selenium and GPX4, a Vital Symbiosis. Free Radical Biology and Medicine, 127, 153-159. https://doi.org/10.1016/j.freeradbiomed.2018.03.001
|