[1]
|
Kreuter, J. and Speiser, P.P. (1976) In Vitro Studies of Poly(Methyl Methacrylate) Adjuvants. Journal of Pharmaceutical Sciences, 65, 1624-1627. https://doi.org/10.1002/jps.2600651115
|
[2]
|
Gottardo, S., Mech, A., Drbohlavová, J., Małyska, A., Bøwadt, S., Riego Sintes, J., et al. (2021) Towards Safe and Sustainable Innovation in Nanotechnology: State-Of-Play for Smart Nanomaterials. NanoImpact, 21, Article ID: 100297. https://doi.org/10.1016/j.impact.2021.100297
|
[3]
|
Bhushan, B. (2017) Springer Handbook of Nanotechnology. Springer. https://doi.org/10.1007/978-3-662-54357-3
|
[4]
|
Rotello, V. (2004) Nanoparticles: Building Blocks for Nanotechnology. Springer. https://doi.org/10.1007/978-1-4419-9042-6
|
[5]
|
Petros, R.A. and DeSimone, J.M. (2010) Strategies in the Design of Nanoparticles for Therapeutic Applications. Nature Reviews Drug Discovery, 9, 615-627. https://doi.org/10.1038/nrd2591
|
[6]
|
Salata, O. (2004) Applications of Nanoparticles in Biology and Medicine. Journal of Nanobiotechnology, 2, Article No. 3. https://doi.org/10.1186/1477-3155-2-3
|
[7]
|
Stark, W.J., Stoessel, P.R., Wohlleben, W. and Hafner, A. (2015) Industrial Applications of Nanoparticles. Chemical Society Reviews, 44, 5793-5805. https://doi.org/10.1039/c4cs00362d
|
[8]
|
Santos, C.S.C., Gabriel, B., Blanchy, M., Menes, O., García, D., Blanco, M., et al. (2015) Industrial Applications of Nanoparticles—A Prospective Overview. Materials Today: Proceedings, 2, 456-465. https://doi.org/10.1016/j.matpr.2015.04.056
|
[9]
|
Schmid, K. and Riediker, M. (2008) Use of Nanoparticles in Swiss Industry: A Targeted Survey. Environmental Science & Technology, 42, 2253-2260. https://doi.org/10.1021/es071818o
|
[10]
|
Panpatte, D.G., Jhala, Y.K., Shelat, H.N. and Vyas, R.V. (2016) Nanoparticles: The Next Generation Technology for Sustainable Agriculture. In: Singh, D., Singh, H. and Prabha, R., Eds., Microbial Inoculants in Sustainable Agricultural Productivity, Springer, 289-300. https://doi.org/10.1007/978-81-322-2644-4_18
|
[11]
|
Singh, R.P., Handa, R. and Manchanda, G. (2021) Nanoparticles in Sustainable Agriculture: An Emerging Opportunity. Journal of Controlled Release, 329, 1234-1248. https://doi.org/10.1016/j.jconrel.2020.10.051
|
[12]
|
Tang, S.C.N. and Lo, I.M.C. (2013) Magnetic Nanoparticles: Essential Factors for Sustainable Environmental Applications. Water Research, 47, 2613-2632. https://doi.org/10.1016/j.watres.2013.02.039
|
[13]
|
Thomas, J., Myara, M., Troussellier, L., Burov, E., Pastouret, A., Boivin, D., et al. (2012) Radiation-Resistant Erbium-Doped-Nanoparticles Optical Fiber for Space Applications. Optics Express, 20, 2435-2444. https://doi.org/10.1364/oe.20.002435
|
[14]
|
Marciano, F.R., Bonetti, L.F., Pessoa, R.S., Marcuzzo, J.S., Massi, M., Santos, L.V., et al. (2008) The Improvement of DLC Film Lifetime Using Silver Nanoparticles for Use on Space Devices. Diamond and Related Materials, 17, 1674-1679. https://doi.org/10.1016/j.diamond.2008.03.007
|
[15]
|
Fu, X., Cai, J., Zhang, X., Li, W., Ge, H. and Hu, Y. (2018) Top-Down Fabrication of Shape-Controlled, Monodisperse Nanoparticles for Biomedical Applications. Advanced Drug Delivery Reviews, 132, 169-187. https://doi.org/10.1016/j.addr.2018.07.006
|
[16]
|
Abid, N., Khan, A.M., Shujait, S., Chaudhary, K., Ikram, M., Imran, M., et al. (2022) Synthesis of Nanomaterials Using Various Top-Down and Bottom-Up Approaches, Influencing Factors, Advantages, and Disadvantages: A Review. Advances in Colloid and Interface Science, 300, Article ID: 102597. https://doi.org/10.1016/j.cis.2021.102597
|
[17]
|
Djurišić, A.B., Ng, A.M.C. and Chen, X.Y. (2010) ZnO Nanostructures for Optoelectronics: Material Properties and Device Applications. Progress in Quantum Electronics, 34, 191-259. https://doi.org/10.1016/j.pquantelec.2010.04.001
|
[18]
|
Belhaj, M., Dridi, C., Elhouichet, H. and Valmalette, J.C. (2016) Study of ZnO Nanoparticles Based Hybrid Nanocomposites for Optoelectronic Applications. Journal of Applied Physics, 119, Article ID: 095501. https://doi.org/10.1063/1.4942525
|
[19]
|
Muchuweni, E., Sathiaraj, T.S. and Nyakotyo, H. (2017) Synthesis and Characterization of Zinc Oxide Thin Films for Optoelectronic Applications. Heliyon, 3, e00285. https://doi.org/10.1016/j.heliyon.2017.e00285
|
[20]
|
Wong, K.K., Ng, A., Chen, X.Y., Ng, Y.H., Leung, Y.H., Ho, K.H., et al. (2012) Effect of ZnO Nanoparticle Properties on Dye-Sensitized Solar Cell Performance. ACS Applied Materials & Interfaces, 4, 1254-1261. https://doi.org/10.1021/am201424d
|
[21]
|
Shashanka, R., Esgin, H., Yilmaz, V.M. and Caglar, Y. (2020) Fabrication and Characterization of Green Synthesized ZnO Nanoparticle Based Dye-Sensitized Solar Cells. Journal of Science: Advanced Materials and Devices, 5, 185-191. https://doi.org/10.1016/j.jsamd.2020.04.005
|
[22]
|
Elkhidir Suliman, A., Tang, Y. and Xu, L. (2007) Preparation of ZnO Nanoparticles and Nanosheets and Their Application to Dye-Sensitized Solar Cells. Solar Energy Materials and Solar Cells, 91, 1658-1662. https://doi.org/10.1016/j.solmat.2007.05.014
|
[23]
|
Kahouli, M., Barhoumi, A., Bouzid, A., Al-Hajry, A. and Guermazi, S. (2015) Structural and Optical Properties of ZnO Nanoparticles Prepared by Direct Precipitation Method. Superlattices and Microstructures, 85, 7-23. https://doi.org/10.1016/j.spmi.2015.05.007
|
[24]
|
Raoufi, D. (2013) Synthesis and Microstructural Properties of ZnO Nanoparticles Prepared by Precipitation Method. Renewable Energy, 50, 932-937. https://doi.org/10.1016/j.renene.2012.08.076
|
[25]
|
An, L.J., Wang, J., Zhang, T.F., Yang, H.L. and Sun, Z.H. (2011) Synthesis of ZnO Nanoparticles by Direct Precipitation Method. Advanced Materials Research, 380, 335-338. https://doi.org/10.4028/www.scientific.net/amr.380.335
|
[26]
|
Manikandan, B., Endo, T., Kaneko, S., Murali, K.R. and John, R. (2018) Properties of Sol Gel Synthesized ZnO Nanoparticles. Journal of Materials Science: Materials in Electronics, 29, 9474-9485. https://doi.org/10.1007/s10854-018-8981-8
|
[27]
|
Hasnidawani, J.N., Azlina, H.N., Norita, H., Bonnia, N.N., Ratim, S. and Ali, E.S. (2016) Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chemistry, 19, 211-216. https://doi.org/10.1016/j.proche.2016.03.095
|
[28]
|
Chung, Y.T., Ba-Abbad, M.M., Mohammad, A.W., Hairom, N.H.H. and Benamor, A. (2015) Synthesis of Minimal-Size ZnO Nanoparticles through Sol-Gel Method: Taguchi Design Optimisation. Materials & Design, 87, 780-787. https://doi.org/10.1016/j.matdes.2015.07.040
|
[29]
|
Aneesh, P.M., Vanaja, K.A. and Jayaraj, M.K. (2007) Synthesis of ZnO Nanoparticles by Hydrothermal Method. SPIE Proceedings, 6639. https://doi.org/10.1117/12.730364
|
[30]
|
Bharti, D.B. and Bharati, A.V. (2016) Synthesis of ZnO Nanoparticles Using a Hydrothermal Method and a Study Its Optical Activity. Luminescence, 32, 317-320. https://doi.org/10.1002/bio.3180
|
[31]
|
Kumaresan, N., Ramamurthi, K., Ramesh Babu, R., Sethuraman, K. and Moorthy Babu, S. (2017) Hydrothermally Grown ZnO Nanoparticles for Effective Photocatalytic Activity. Applied Surface Science, 418, 138-146. https://doi.org/10.1016/j.apsusc.2016.12.231
|
[32]
|
Lee, G.J., Choi, E.H., Nam, S., Lee, J.S., Boo, J., Oh, S.D., et al. (2019) Optical Sensing Properties of ZnO Nanoparticles Prepared by Spray Pyrolysis. Journal of Nanoscience and Nanotechnology, 19, 1048-1051. https://doi.org/10.1166/jnn.2019.15918
|
[33]
|
Lee, S.D., Nam, S., Kim, M. and Boo, J. (2012) Synthesis and Photocatalytic Property of ZnO Nanoparticles Prepared by Spray-Pyrolysis Method. Physics Procedia, 32, 320-326. https://doi.org/10.1016/j.phpro.2012.03.563
|
[34]
|
Wallace, R., Brown, A.P., Brydson, R., Wegner, K. and Milne, S.J. (2013) Synthesis of ZnO Nanoparticles by Flame Spray Pyrolysis and Characterisation Protocol. Journal of Materials Science, 48, 6393-6403. https://doi.org/10.1007/s10853-013-7439-x
|
[35]
|
Umar, A., Kumar, R., Kumar, G., Algarni, H. and Kim, S.H. (2015) Effect of Annealing Temperature on the Properties and Photocatalytic Efficiencies of ZnO Nanoparticles. Journal of Alloys and Compounds, 648, 46-52. https://doi.org/10.1016/j.jallcom.2015.04.236
|
[36]
|
El-Desoky, M.M., Ali, M.A., Afifi, G., Imam, H. and Al-Assiri, M.S. (2016) Effects of Annealing Temperatures on the Structural and Dielectric Properties of ZnO Nanoparticles. Silicon, 10, 301-307. https://doi.org/10.1007/s12633-016-9445-5
|
[37]
|
Omri, K., Najeh, I. and El Mir, L. (2016) Influence of Annealing Temperature on the Microstructure and Dielectric Properties of ZnO Nanoparticles. Ceramics International, 42, 8940-8948. https://doi.org/10.1016/j.ceramint.2016.02.151
|
[38]
|
Minagar, S., Berndt, C.C., Wang, J., Ivanova, E. and Wen, C. (2012) A Review of the Application of Anodization for the Fabrication of Nanotubes on Metal Implant Surfaces. Acta Biomaterialia, 8, 2875-2888. https://doi.org/10.1016/j.actbio.2012.04.005
|
[39]
|
Fukuda, H. and Matsumoto, Y. (2004) Effects of Na2SiO3 on Anodization of Mg-Al-Zn Alloy in 3 M KOH Solution. Corrosion Science, 46, 2135-2142. https://doi.org/10.1016/j.corsci.2004.02.001
|
[40]
|
Kulkarni, M., Mazare, A., Schmuki, P. and Iglic, A. (2016) Influence of Anodization Parameters on Morphology of TiO2 Nanostructured Surfaces. Advanced Materials Letters, 7, 23-28. https://doi.org/10.5185/amlett.2016.6156
|
[41]
|
Sulka, G.D. (2020) Introduction to Anodization of Metals. In: Sulka, G.D., Ed., Nanostructured Anodic Metal Oxides, Elsevier, 1-34. https://doi.org/10.1016/b978-0-12-816706-9.00001-7
|
[42]
|
Robinson Aguirre, O. and Félix Echeverría, E. (2018) Effects of Fluoride Source on the Characteristics of Titanium Dioxide Nanotubes. Applied Surface Science, 445, 308-319. https://doi.org/10.1016/j.apsusc.2018.03.139
|
[43]
|
İzmir, M. and Ercan, B. (2018) Anodization of Titanium Alloys for Orthopedic Applications. Frontiers of Chemical Science and Engineering, 13, 28-45. https://doi.org/10.1007/s11705-018-1759-y
|
[44]
|
Kim, S.J., Lee, J. and Choi, J. (2008) Understanding of Anodization of Zinc in an Electrolyte Containing Fluoride Ions. Electrochimica Acta, 53, 7941-7945. https://doi.org/10.1016/j.electacta.2008.06.006
|
[45]
|
Kuan, C.Y., Chou, J.M., Leu, I.C. and Hon, M.H. (2007) Formation and Field Emission Property of Single-Crystalline Zn Microtip Arrays by Anodization. Electrochemistry Communications, 9, 2093-2097. https://doi.org/10.1016/j.elecom.2007.06.004
|
[46]
|
Shetty, A. and Nanda, K.K. (2012) Synthesis of Zinc Oxide Porous Structures by Anodization with Water as an Electrolyte. Applied Physics A, 109, 151-157. https://doi.org/10.1007/s00339-012-7023-2
|
[47]
|
Elam, J.W. and George, S.M. (2003) Growth of ZnO/Al2O3 Alloy Films Using Atomic Layer Deposition Techniques. Chemistry of Materials, 15, 1020-1028.
|
[48]
|
Hynes, A.P., Doremus, R.H. and Siegel, R.W. (2002) Sintering and Characterization of Nanophase Zinc Oxide. Journal of the American Ceramic Society, 85, 1979-1987. https://doi.org/10.1111/j.1151-2916.2002.tb00391.x
|
[49]
|
Mahian, O., Kianifar, A. and Wongwises, S. (2013) Dispersion of ZnO Nanoparticles in a Mixture of Ethylene Glycol-Water, Exploration of Temperature-Dependent Density, and Sensitivity Analysis. Journal of Cluster Science, 24, 1103-1114. https://doi.org/10.1007/s10876-013-0601-4
|
[50]
|
Xu, F., Zhang, P., Navrotsky, A., Yuan, Z., Ren, T., Halasa, M., et al. (2007) Hierarchically Assembled Porous ZnO Nanoparticles: Synthesis, Surface Energy, and Photocatalytic Activity. Chemistry of Materials, 19, 5680-5686. https://doi.org/10.1021/cm071190g
|
[51]
|
Radovanovic, P.V., Norberg, N.S., McNally, K.E. and Gamelin, D.R. (2002) Colloidal Transition-Metal-Doped ZnO Quantum Dots. Journal of the American Chemical Society, 124, 15192-15193. https://doi.org/10.1021/ja028416v
|
[52]
|
Wu, Y.L., Lim, C.S., Fu, S., Tok, A.I.Y., Lau, H.M., Boey, F.Y.C., et al. (2007) Surface Modifications of ZnO Quantum Dots for Bio-Imaging. Nanotechnology, 18, Article ID: 215604. https://doi.org/10.1088/0957-4484/18/21/215604
|
[53]
|
Flores, N.M., Pal, U., Galeazzi, R. and Sandoval, A. (2014) Effects of Morphology, Surface Area, and Defect Content on the Photocatalytic Dye Degradation Performance of ZnO Nanostructures. RSC Advances, 4, 41099-41110. https://doi.org/10.1039/c4ra04522j
|
[54]
|
Yamamoto, O., Hotta, M., Sawai, J., Sasamoto, T. and Kojima, H. (1998) Influence of Powder Characteristic of ZnO on Antibacterial Activity. Journal of the Ceramic Society of Japan, 106, 1007-1011. https://doi.org/10.2109/jcersj.106.1007
|
[55]
|
Mateos-Pedrero, C., Silva, H., Pacheco Tanaka, D.A., Liguori, S., Iulianelli, A., Basile, A., et al. (2015) CuO/ZnO Catalysts for Methanol Steam Reforming: The Role of the Support Polarity Ratio and Surface Area. Applied Catalysis B: Environment and Energy, 174, 67-76. https://doi.org/10.1016/j.apcatb.2015.02.039
|
[56]
|
Sun, Y., Chen, L., Bao, Y., Zhang, Y., Wang, J., Fu, M., et al. (2016) The Applications of Morphology Controlled ZnO in Catalysis. Catalysts, 6, Article 188. https://doi.org/10.3390/catal6120188
|
[57]
|
Uma, K., Ananthakumar, S., Mangalaraja, R.V., Mahesh, K.P.O., Soga, T. and Jimbo, T. (2008) A Facile Approach to Hexagonal ZnO Nanorod Assembly. Journal of Sol-Gel Science and Technology, 49, 1-5. https://doi.org/10.1007/s10971-008-1846-5
|
[58]
|
Bin, Z., Liu, Z., Qiu, Y. and Duan, L. (2018) Efficient N-Dopants and Their Roles in Organic Electronics. Advanced Optical Materials, 6, Article ID: 1800536. https://doi.org/10.1002/adom.201800536
|
[59]
|
Velumani, S. and Ascencio, J.A. (2004) Formation of ZnS Nanorods by Simple Evaporation Technique. Applied Physics A, 79, 153-156. https://doi.org/10.1007/s00339-003-2367-2
|
[60]
|
Singh, S., Gade, J.V., Verma, D.K., Elyor, B. and Jain, B. (2024) Exploring ZnO Nanoparticles: UV-Visible Analysis and Different Size Estimation Methods. Optical Materials, 152, 115422. https://doi.org/10.1016/j.optmat.2024.115422
|
[61]
|
Muhammad, W., Ullah, N., Haroon, M. and Abbasi, B.H. (2019) Optical, Morphological and Biological Analysis of Zinc Oxide Nanoparticles (ZnO NpS) Using Papaver somniferum L. RSC Advances, 9, 29541-29548. https://doi.org/10.1039/c9ra04424h
|
[62]
|
Haryński, Ł., Olejnik, A., Grochowska, K. and Siuzdak, K. (2022) A Facile Method for Tauc Exponent and Corresponding Electronic Transitions Determination in Semiconductors Directly from UV-Vis Spectroscopy Data. Optical Materials, 127, Article ID: 112205. https://doi.org/10.1016/j.optmat.2022.112205
|
[63]
|
Jubu, P.R., Yam, F.K., Igba, V.M. and Beh, K.P. (2020) Tauc-Plot Scale and Extrapolation Effect on Bandgap Estimation from UV-vis-NIR Data—A Case Study of β-Ga2O3. Journal of Solid State Chemistry, 290, Article ID: 121576. https://doi.org/10.1016/j.jssc.2020.121576
|
[64]
|
Shan, F.K. and Yu, Y.S. (2004) Band Gap Energy of Pure and Al-Doped ZnO Thin Films. Journal of the European Ceramic Society, 24, 1869-1872. https://doi.org/10.1016/s0955-2219(03)00490-4
|
[65]
|
Zeuner, A., Alves, H., Hofmann, D.M., Meyer, B.K., Heuken, M., Bläsing, J., et al. (2002) Structural and Optical Properties of Epitaxial and Bulk ZnO. Applied Physics Letters, 80, 2078-2080. https://doi.org/10.1063/1.1464218
|
[66]
|
Baran, W., Adamek, E. and Makowski, A. (2008) The Influence of Selected Parameters on the Photocatalytic Degradation of Azo-Dyes in the Presence of TiO2 Aqueous Suspension. Chemical Engineering Journal, 145, 242-248. https://doi.org/10.1016/j.cej.2008.04.021
|
[67]
|
Ong, C.B., Ng, L.Y. and Mohammad, A.W. (2018) A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renewable and Sustainable Energy Reviews, 81, 536-551. https://doi.org/10.1016/j.rser.2017.08.020
|
[68]
|
Sang, Y., Li, J., Zhou, J., Li, Y., Zhang, J., Xia, X., et al. (2024) The Activation of Peroxymonosulfate via Oxygen/Cobalt-Modified Carbon Nitride for Decomposition of Acid Orange 7: Role of High-Value Cobalt and Superoxide Radical. Research on Chemical Intermediates, 50, 4155-4174. https://doi.org/10.1007/s11164-024-05364-9
|
[69]
|
Janotti, A. and Van de Walle, C.G. (2005) Oxygen Vacancies in ZnO. Applied Physics Letters, 87, Article ID: 122102. https://doi.org/10.1063/1.2053360
|
[70]
|
Leiter, F., Alves, H., Pfisterer, D., Romanov, N.G., Hofmann, D.M. and Meyer, B.K. (2003) Oxygen Vacancies in ZnO. Physica B: Condensed Matter, 340, 201-204. https://doi.org/10.1016/j.physb.2003.09.031
|
[71]
|
Hofmann, D.M., Pfisterer, D., Sann, J., Meyer, B.K., Tena-Zaera, R., Munoz-Sanjose, V., et al. (2007) Properties of the Oxygen Vacancy in ZnO. Applied Physics A, 88, 147-151. https://doi.org/10.1007/s00339-007-3956-2
|