On a Nonlinear Volterra-Fredholm Integrodifferential Equation on Time Scales

Abstract

The main aim in this work is to obtain an integral inequality with a clear estimate on time scales. The obtained inequality is used as a tool to investigate some basic qualitative properties of solutions to certain nonlinear Volterra-Fredholm integrodifferential equations on time scales.

Share and Cite:

Noori, M. and Mahmood, A. (2020) On a Nonlinear Volterra-Fredholm Integrodifferential Equation on Time Scales. Open Access Library Journal, 7, 1-10. doi: 10.4236/oalib.1106103.

1. Introduction

The theory of time scales had been begun in 1988 by Stefan Hilger [1], in order to develop a theory that can standardize a continuous and discrete analysis. Recently several authors in this field have investigated various forms of integral and integrodifferential equations under different hypotheses by using different ways, see [4] [5] [6] [7] [8]. In this article we consider the nonlinear integrodifferential equation of the following form

y Δ ( t ) = h ( t , y ( t ) , y Δ ( t ) , α t h 1 ( t , z , y ( z ) , y Δ ( z ) ) Δ z , α β h 2 ( t , z , y ( z ) , y Δ ( z ) ) Δ z ) , t J T with the initial condition y ( α ) = y 0 , (1.1)

where y is unknown function and h : J T × n × n × n × n n , h 1 , h 2 : J T 2 × n × n n and h , h 1 , h 2 are given functions, assuming them to be rd-continuous functions, α < β , z t and J T = J T , J = [ α , ) . We denote a time scale by T which is nonempty closed subset of . n denotes Euclidean space with a suitable norm defined by | . | .

We can investigate the existence and uniqueness results for (1.1) by using the technique present in [6].

2. Preliminaries

The operators σ ( t ) and ρ ( t ) denote the forward and backward operators respectively which are defined by σ ( t ) = inf { s T : s > t } T and ρ ( t ) = sup { s T : s < t } T , for all t T .

For t T , If t < sup T and σ ( t ) = t , then t is said to be right-dense; while If t > inf T and ρ ( t ) = t , then t is said to be left-dense. The graininess μ : T [ 0 , ) is defined by μ ( t ) = σ ( t ) t . The set T k is denoted by

T k = { T \ ( ρ ( sup T ) , sup T ] if sup T < T otherwise

Let z : T , t T k , then z Δ ( t ) denotes the delta derivative of z at t which is exist with the property that given ε > 0 there is a neighbourhood U of t such that | z ( σ ( t ) , τ ) z ( s , τ ) z Δ ( t , τ ) ( σ ( t ) s ) | ε | σ ( t ) s | for all s U . Then g ( t ) = α t z ( t , τ ) Δ τ implies g Δ ( t ) = α t z Δ ( t , τ ) Δ τ + z ( σ ( t ) , t ) . If a function g : T is continuous at any right-dense point t T and the left-hand limits exists (finite) at any left-dense point t T , then g is said to be rd-continuous. C r d denotes the class of all rd-continuous functions. We denote the class of all regressive functions by R which is defined by

R = { p C r d ( T , ) and 1 + p ( t ) μ ( t ) 0 , t T }

For p R , we define e p ( t , s ) = exp ( s t ξ μ ( τ ) ( p ( τ ) ) Δ τ ) for t , s T , with the cylinder transformation ξ h ( τ ) = { log ( 1 + h z ) h if h 0 z if h = 0 .

For more basic information about time scales calculus, see [1] [3].

We need the following result given in [2].

Lemma 2.1. suppose ν , b C r d and a R + . Then

ν Δ ( t ) a ( t ) ν ( t ) + b ( t ) , for all t T

Implies ν ( t ) ν ( α ) e a ( t , α ) + α t e a ( t , σ ( τ ) ) b ( τ ) Δ τ , for all t T .

3. Main Results

In the following result we establish an integral inequality on time scales.

Theorem 3.1. Let ν , r , b 1 , b 2 , p , q , g , d C r d ( J T , + ) and assume that

ν ( t ) r ( t ) + b 1 ( t ) α t { [ b 2 ( t ) p ( τ ) + 1 ] ν ( τ ) + b 2 ( τ ) α τ p ( z ) ν ( z ) Δ z + q ( τ ) α β g ( z ) ν ( z ) Δ z } Δ τ + d ( t ) α β g ( z ) ν ( z ) Δ z , t J T , (3.1)

If

N = α β g ( γ ) N 2 ( γ ) Δ γ < 1 , (3.2)

Implies

ν ( t ) N 1 ( t ) + A N 2 ( t ) , t J T , (3.3)

where

N 1 ( t ) = r ( t ) + b 1 ( t ) α t [ b 2 σ ( τ ) p ( τ ) + 1 ] [ r ( τ ) + b ( τ ) α τ e ( b 2 σ p + p + 1 ) b ( τ , σ ( z ) ) × ( b 2 σ ( z ) p ( z ) + p ( z ) + 1 ) r ( z ) Δ z ] Δ τ , (3.4)

N 2 ( t ) = d ( t ) + b 1 ( t ) α t { [ b 2 σ ( τ ) p ( τ ) + 1 ] [ d ( τ ) + b ( τ ) α τ e ( b 2 σ p + p + 1 ) b ( τ , σ ( z ) ) × ( [ b 2 σ ( z ) p ( z ) + p ( z ) + 1 ] d ( z ) + q ( z ) ) Δ z ] + q ( τ ) } Δ τ , (3.5)

for t J T ,

b 2 σ ( t ) = b 2 ( σ ( t ) ) = b 2 σ , b ( t ) = max t J T { b 1 ( t ) , b 2 ( t ) + b 2 Δ ( t ) } , (3.6)

A = 1 1 N α β g ( γ ) N 1 ( γ ) Δ γ , (3.7)

Proof. Let

λ = α β g ( z ) ν ( z ) Δ z , (3.8)

we shall define functions B 1 ( t ) and B 2 ( t ) by

B 1 ( t ) = α t { [ b 2 ( t ) p ( τ ) + 1 ] ν ( τ ) + b 2 ( τ ) α τ p ( z ) ν ( z ) Δ z + q ( τ ) α β g ( z ) ν ( z ) Δ z } Δ τ , (3.9)

B 2 ( t ) = B 1 ( t ) + α t p ( z ) [ r ( z ) + b 1 ( z ) B 1 ( z ) + d ( z ) λ ] Δ z , (3.10)

then B 1 ( α ) = 0 , B 2 ( α ) = 0 , B 1 ( t ) B 2 ( t ) and we have

ν ( t ) r ( t ) + b 1 ( t ) B 1 ( t ) + d ( t ) λ , (3.11)

from (3.9), we get

B 1 Δ ( t ) = α t b 2 Δ ( t ) p ( τ ) ν ( τ ) Δ τ + [ b 2 σ ( t ) p ( t ) + 1 ] ν ( t ) + b 2 ( t ) α t p ( z ) ν ( z ) Δ z + q ( t ) α β g ( z ) ν ( z ) Δ z [ b 2 σ ( t ) p ( t ) + 1 ] r ( t ) + [ b 2 σ ( t ) p ( t ) + 1 ] b 1 ( t ) B 1 ( t ) + [ b 2 σ ( t ) p ( t ) + 1 ] d ( t ) λ + [ b 2 ( t ) + b 2 Δ ( t ) ] α t p ( z ) ν ( z ) Δ z + q ( t ) λ

[ b 2 σ ( t ) p ( t ) + 1 ] r ( t ) + b 2 σ ( t ) p ( t ) b ( t ) B 1 ( t ) + b ( t ) [ B 1 ( t ) + α t p ( z ) ν ( z ) Δ z ] + [ b 2 σ ( t ) p ( t ) + 1 ] d ( t ) λ + q ( t ) λ [ b 2 σ ( t ) p ( t ) + 1 ] [ r ( t ) + b ( t ) B 2 ( t ) + d ( t ) λ ] + q ( t ) λ , (3.12)

integrating the inequality (3.12) and using B 1 ( α ) = 0 , we have

B 1 ( t ) α t { [ b 2 σ ( τ ) p ( τ ) + 1 ] [ r ( τ ) + b ( τ ) B 2 ( τ ) + d ( τ ) λ ] + q ( τ ) λ } Δ τ , (3.13)

therefore

B 2 Δ ( t ) = B 1 Δ ( t ) + p ( t ) [ r ( t ) + b 1 ( t ) B 1 ( t ) + d ( t ) λ ] [ b 2 σ ( t ) p ( t ) + 1 ] [ r ( t ) + b ( t ) B 2 ( t ) + d ( t ) λ ] + q ( t ) λ + p ( t ) [ r ( t ) + b ( t ) B 2 ( t ) + d ( t ) λ ] = [ b 2 σ ( t ) p ( t ) + p ( t ) + 1 ] b ( t ) B 2 ( t ) + [ b 2 σ ( t ) p ( t ) + p ( t ) + 1 ] [ r ( t ) + d ( t ) λ ] + q ( t ) λ , (3.14)

now applying lemma 2.1, we get

B 2 ( t ) α t e ( b 2 σ p + p + 1 ) b ( t , σ ( z ) ) × ( [ b 2 σ ( z ) p ( z ) + p ( z ) + 1 ] [ a ( z ) + d ( z ) λ ] + q ( z ) λ ) Δ z , (3.15)

from (3.11), (3.13) and (3.15), we obtain that

ν ( t ) N 1 ( t ) + λ N 2 ( t ) , (3.16)

and from (3.8) and (3.16) we observe that

λ A , (3.17)

using (3.17) in (3.16) we obtain (3.3). □

We provide the result that includes the estimate on the solutions of (1.1) as follows.

Theorem 3.2. Assume that the following conditions satisfied

| h ( t , ν 1 , ν 2 , ν 3 , ν 4 ) | L [ | ν 1 | + | ν 2 | + | ν 3 | + | ν 4 | ] , (3.18)

| h 1 ( t , z , u , ν ) | c 1 ( t ) s 1 ( z ) [ | u | + | ν | ] , (3.19)

| h 2 ( t , z , u , ν ) | c 2 ( t ) s 2 ( z ) [ | u | + | ν | ] , (3.20)

for the functions h , h 1 , h 2 in (1.1), where 0 L < 1 is a constant and

c 1 , s 1 , c 2 , s 2 C r d ( J T , + )

If y ( t ) is a solution of (1.1) on J T , then

| y ( t ) | + | y Δ ( t ) | M 1 ( t ) + D 1 M 2 ( t ) , t J T , (3.21)

where

M 1 ( t ) = | y 0 | 1 L + L 1 L α t [ c 1 σ ( τ ) s 1 ( τ ) + 1 ] [ | y 0 | 1 L + b ( τ ) α τ e ( c 1 σ s 1 + s 1 + 1 ) b ( τ , σ ( z ) ) × ( c 1 σ ( z ) s 1 ( z ) + s 1 ( z ) + 1 ) | y 0 | 1 L Δ z ] Δ τ , t J T (3.22)

M 2 ( t ) = L 1 L c 2 ( t ) + L 1 L α t { [ c 1 σ ( τ ) s 1 ( τ ) + 1 ] [ L 1 L c 2 ( τ ) + b ( τ ) α τ e ( c 1 σ s 1 + s 1 + 1 ) b ( τ , σ ( z ) ) × ( [ c 1 σ ( z ) s 1 ( z ) + s 1 ( z ) + 1 ] L 1 L c 2 ( z ) + c 2 ( z ) ) Δ z ] + c 2 ( τ ) } Δ τ , t J T

(3.23)

Assume that

b ( t ) = max t J T { L 1 L , c 1 ( t ) + c 1 Δ ( t ) } , (3.24)

λ = α β s 2 ( γ ) M 2 ( γ ) Δ γ < 1 , (3.25)

D 1 = 1 1 λ α β s 2 ( γ ) M 1 ( γ ) Δ γ , (3.26)

Proof. Let a ( t ) = | y ( t ) | + | y Δ ( t ) | , t J T , since y ( t ) is a solution of (1.1), then by using this and the hypotheses, we get

a ( t ) = | y 0 + α t h ( τ , y ( τ ) , y Δ ( τ ) , α τ h 1 ( τ , z , y ( z ) , y Δ ( z ) ) Δ z , α β h 2 ( τ , z , y ( z ) , y Δ ( z ) ) Δ z ) Δ τ | + | h ( t , y ( t ) , y Δ ( t ) , α t h 1 ( t , z , y ( z ) , y Δ ( z ) ) Δ z , α β h 2 ( t , z , y ( z ) , y Δ ( z ) ) Δ z ) | | y 0 | + α t L [ a ( τ ) + α τ c 1 ( τ ) s 1 ( z ) a ( z ) Δ z + α β c 2 ( τ ) s 2 ( z ) a ( z ) Δ z ] Δ τ + L [ a ( t ) + α t c 1 ( t ) s 1 ( z ) a ( z ) Δ z + α β c 2 ( t ) s 2 ( z ) a ( z ) Δ z ]

from the above inequality, we have

a ( t ) | y 0 | 1 L + L 1 L α t { [ c 1 ( t ) s 1 ( τ ) + 1 ] a ( τ ) + c 1 ( τ ) α τ s 1 ( z ) a ( z ) Δ z + c 2 ( τ ) α β s 2 ( z ) a ( z ) Δ z } Δ τ + L 1 L c 2 ( t ) α β s 2 ( z ) a ( z ) Δ z , (3.27)

Now applying theorem 3.1 in (3.27) we obtain (3.21). □

Remark 3.3. Since y ( t ) is a solution of (1.1). Then (3.21) yields the bounds on y ( t ) and y Δ ( t ) . If the estimate in (3.21) is bounded, implies the solution y ( t ) and y Δ ( t ) are also bounded on J T .

Consider (1.1) with the following corresponding equation

Y Δ ( t ) = H ( t , Y ( t ) , Y Δ ( t ) , α t h 1 ( t , z , Y ( z ) , Y Δ ( z ) ) Δ z , α β h 2 ( t , z , Y ( z ) , Y Δ ( z ) ) Δ z ) , t J T ,

with the initial condition

Y ( α ) = Y 0 (3.28)

where H C r d ( J T × n × n × n × n , n ) , h 1 , h 2 as in (1.1).

The next result concerning the closeness of solution of (1.1) and (3.28).

Theorem 3.4. Suppose that the following conditions satisfied

| h ( t , ν 1 , ν 2 , ν 3 , ν 4 ) h ( t , ν ¯ 1 , ν ¯ 2 , ν ¯ 3 , ν ¯ 4 ) | L [ | ν 1 ν ¯ 1 | + | ν 2 ν ¯ 2 | + | ν 3 ν ¯ 3 | + | ν 4 ν ¯ 4 | ] , (3.29)

| h 1 ( t , z , u , ν ) h 1 ( t , z , u ¯ , ν ¯ ) | c 1 ( t ) s 1 ( z ) [ | u u ¯ | + | ν ν ¯ | ] , (3.30)

| h 2 ( t , z , u , ν ) h 2 ( t , z , u ¯ , ν ¯ ) | c 2 ( t ) s 2 ( z ) [ | u u ¯ | + | ν ν ¯ | ] , (3.31)

where the functions h , h 1 , h 2 in (1.1), and 0 L < 1 is a constant.

Also c 1 , s 1 , c 2 , s 2 C r d ( J T , + ) , and

| h ( t , ν 1 , ν 2 , ν 3 , ν 4 ) H ( t , ν 1 , ν 2 , ν 3 , ν 4 ) | ε , (3.32)

| y 0 Y 0 | δ , (3.33)

where y 0 and H , Y 0 as in (1.1) and (3.28) respectively.

If y ( t ) and Y ( t ) be solutions of (1.1) and (3.28) on J T , then

| y ( t ) Y ( t ) | + | y Δ ( t ) Y Δ ( t ) | M 3 ( t ) + D 2 M 2 ( t ) , t J T , (3.34)

where M 3 ( t ) is described by the right side of (3.22) by substituting m ( t ) = δ + ε ( 1 + t α ) instead of | y 0 | , M 2 ( t ) , b ( t ) and λ be as in (3.23), (3.24) and (3.25) respectively and

D 2 = 1 1 λ α β r 2 ( γ ) M 3 ( γ ) Δ γ , (3.35)

Proof. Let w ( t ) = | y ( t ) Y ( t ) | + | y Δ ( t ) Y Δ ( t ) | , t J T , we have

w ( t ) | y 0 Y 0 | + α t | h ( τ , y ( τ ) , y Δ ( τ ) , α τ h 1 ( τ , z , y ( z ) , y Δ ( z ) ) Δ z , α β h 2 ( τ , z , y ( z ) , y Δ ( z ) ) Δ z ) h ( τ , Y ( τ ) , Y Δ ( τ ) , α τ h 1 ( τ , z , Y ( z ) , Y Δ ( z ) ) Δ z , α β h 2 ( τ , z , Y ( z ) , Y Δ ( z ) ) Δ z ) | Δ τ + α t | h ( τ , Y ( τ ) , Y Δ ( τ ) , α τ h 1 ( τ , z , Y ( z ) , Y Δ ( z ) ) Δ z , α β h 2 ( τ , z , Y ( z ) , Y Δ ( z ) ) Δ z ) H ( τ , Y ( τ ) , Y Δ ( τ ) , α r h 1 ( τ , z , Y ( z ) , Y Δ ( z ) ) Δ z , α β h 2 ( τ , z , Y ( z ) , Y Δ ( z ) ) Δ z ) | Δ τ

+ | h ( t , y ( t ) , y Δ ( t ) , α t h 1 ( t , z , y ( z ) , y Δ ( z ) ) Δ z , α β h 2 ( t , z , y ( z ) , y Δ ( z ) ) Δ z ) h ( t , Y ( t ) , Y Δ ( t ) , α t h 1 ( t , z , Y ( z ) , Y Δ ( z ) ) Δ z , α β h 2 ( t , z , Y ( z ) , Y Δ ( z ) ) Δ z ) | + | h ( t , Y ( t ) , Y Δ ( t ) , α t h 1 ( t , z , Y ( z ) , Y Δ ( z ) ) Δ z , α β h 2 ( t , z , Y ( z ) , Y Δ ( z ) ) Δ z ) H ( t , Y ( t ) , Y Δ ( t ) , α t h 1 ( t , z , Y ( z ) , Y Δ ( z ) ) Δ z , α β h 2 ( t , z , Y ( z ) , Y Δ ( z ) ) Δ z ) |

δ + α t L [ w ( τ ) + α τ c 1 ( τ ) s 1 ( z ) w ( z ) Δ z + α β c 2 ( τ ) s 2 ( z ) w ( z ) Δ z ] Δ τ + α t ε Δ τ + L [ w ( t ) + α t c 1 ( t ) s 1 ( z ) w ( z ) Δ z + α β c 2 ( t ) s 2 ( z ) w ( z ) Δ z ] + ε = m ( t ) + L α t [ w ( τ ) + c 1 ( τ ) α τ s 1 ( z ) w ( z ) Δ z + c 2 ( τ ) α β s 2 ( z ) w ( z ) Δ z ] Δ τ + L [ w ( t ) + α t c 1 ( t ) s 1 ( z ) w ( z ) Δ z + c 2 ( t ) α β s 2 ( z ) w ( z ) Δ z ]

then we get

w ( t ) m ( t ) 1 L + L 1 L α t { [ c 1 ( t ) s 1 ( τ ) + 1 ] w ( τ ) + c 1 ( τ ) α τ s 1 ( z ) w ( z ) Δ z + c 2 ( τ ) α β s 2 ( z ) w ( z ) Δ z } Δ τ + L 1 L c 2 ( t ) α β s 2 ( z ) w ( z ) Δ z , (3.36)

Now applying theorem 3.1, yields (3.34). □

The following theorem provide the continuous depends of solutions of (1.1) on given initial values.

Theorem 3.5. Assume that the conditions (3.29), (3.30) and (3.31) are satisfied for the functions h , h 1 , h 2 in (1.1). Let y 1 ( t ) and y 2 ( t ) be the solutions of equation

y Δ ( t ) = h ( t , y ( t ) , y Δ ( t ) , α t h 1 ( t , z , y ( z ) , y Δ ( z ) ) Δ z , α β h 2 ( t , z , y ( z ) , y Δ ( z ) ) Δ z ) , t J T ,

with the given initial values

y 1 ( α ) = c 1 and y 2 ( α ) = c 2 , (3.37)

where h , h 1 , h 2 as in (1.1), c 1 and c 2 are constants. Then

| y 1 ( t ) y 2 ( t ) | + | y 1 Δ ( t ) y 2 Δ ( t ) | M 4 ( t ) + D 3 M 2 ( t ) , t J T , (3.38)

where M 4 ( t ) is described by the right side of (3.22) by substituting | c 1 c 2 | instead of | y 0 | , M 2 ( t ) , b ( t ) and λ be as in (3.23), (3.24) and (3.25) respectively and

D 3 = 1 1 λ α β r 2 ( γ ) M 4 ( γ ) Δ γ , (3.39)

Proof. Let n ( t ) = | y 1 ( t ) y 2 ( t ) | + | y 1 Δ ( t ) y 2 Δ ( t ) | , t J T , we get

n ( t ) | c 1 c 2 | + α t | h ( τ , y 1 ( τ ) , y 1 Δ ( τ ) , α τ h 1 ( τ , z , y 1 ( z ) , y 1 Δ ( z ) ) Δ z , α β h 2 ( τ , z , y 1 ( z ) , y 1 Δ ( z ) ) Δ z ) h ( τ , y 2 ( τ ) , y 2 Δ ( τ ) , α τ h 1 ( τ , z , y 2 ( z ) , y 2 Δ ( z ) ) Δ z , α β h 2 ( τ , z , y 2 ( z ) , y 2 Δ ( z ) ) Δ z ) | Δ τ + | h ( t , y 1 ( t ) , y 1 Δ ( t ) , α t h 1 ( t , z , y 1 ( z ) , y 1 Δ ( z ) ) Δ z , α β h 2 ( t , z , y 1 ( z ) , y 1 Δ ( z ) ) Δ z ) h ( t , y 2 ( t ) , y 2 Δ ( t ) , α t h 1 ( t , z , y 2 ( z ) , y 2 Δ ( z ) ) Δ z , α β h 2 ( t , z , y 2 ( z ) , y 2 Δ ( z ) ) Δ z ) |

| c 1 c 2 | + L α t [ n ( τ ) + c 1 ( τ ) α τ s 1 ( z ) n ( z ) Δ z + c 2 ( τ ) α β s 2 ( z ) n ( z ) Δ z ] Δ τ + L [ n ( t ) + α t c 1 ( t ) s 1 ( z ) n ( z ) Δ z + c 2 ( t ) α β s 2 ( z ) n ( z ) Δ z ]

then

n ( t ) | c 1 c 2 | 1 L + L 1 L α t { [ c 1 ( t ) s 1 ( τ ) + 1 ] n ( τ ) + c 1 ( τ ) α τ s 1 ( z ) n ( z ) Δ z + c 2 ( τ ) α β s 2 ( z ) n ( z ) Δ z } Δ τ + L 1 L c 2 ( t ) α β s 2 ( z ) n ( z ) Δ z , (3.40)

Now applying theorem 3.1 in (3.40) we obtain (3.38). □

Remark 3.6. The inequality (3.38) gives the uniqueness of solutions of (3.37). If we have c 1 = c 2 = 0 , then we get M 5 ( t ) = 0 and D 3 = 0 , implies the right hand side of (3.37) is equal to zero.

Now consider the initial value problems

Y Δ ( t ) = h ( t , Y ( t ) , Y Δ ( t ) , α t h 1 ( t , z , Y ( z ) , Y Δ ( z ) ) Δ z , α β h 2 ( t , z , Y ( z ) , Y Δ ( z ) ) Δ z , μ ) , t J T , Y ( α ) = Y 0 , (3.41)

Y Δ ( t ) = h ( t , Y ( t ) , Y Δ ( t ) , α t h 1 ( t , z , Y ( z ) , Y Δ ( z ) ) Δ z , α β h 2 ( t , z , Y ( z ) , Y Δ ( z ) ) Δ z , μ 0 ) , t J T , Y ( α ) = Y 0 , (3.42)

where h C r d ( J T × n × n × n × n , n ) and μ , μ 0 are parameters.

The dependency of solutions of (3.41) and (3.42) on parameters follows in the next theorem.

Theorem 3.7. Suppose that the conditions (3.30) and (3.31) are satisfied and

| h ( t , ν 1 , ν 2 , ν 3 , ν 4 , μ ) h ( t , ν ¯ 1 , ν ¯ 2 , ν ¯ 3 , ν ¯ 4 , μ ) | L [ | ν 1 ν ¯ 1 | + | ν 2 ν ¯ 2 | + | ν 3 ν ¯ 3 | + | ν 4 ν ¯ 4 | ] , (3.43)

| h ( t , ν 1 , ν 2 , ν 3 , ν 4 , μ ) h ( t , ν 1 , ν 2 , ν 3 , ν 4 , μ 0 ) | k ( t ) | μ μ 0 | , (3.44)

where 0 L < 1 is a constant and k C r d ( J T , + ) . Let Y 1 ( t ) and Y 2 ( t ) be respectively, the solutions of (3.41) and (3.42) on J T , then

| Y 1 ( t ) Y 2 ( t ) | + | Y 1 Δ ( t ) Y 2 Δ ( t ) | M 5 ( t ) + D 4 M 2 ( t ) , t J T , (3.45)

where M 5 ( t ) is described by the right side of (3.22) by substituting | μ μ 0 | k ¯ ( t ) instead of | y 0 | , M 2 ( t ) , b ( t ) and λ be as in (3.23), (3.24) and (3.25) respectively.

Let

k ¯ ( t ) = k ( t ) + α t k ( r ) Δ τ , (3.46)

D 4 = 1 1 λ α β r 2 ( γ ) M 5 ( γ ) Δ γ , (3.47)

Proof. Let P ( t ) = | Y 1 ( t ) Y 2 ( t ) | + | Y 1 Δ ( t ) Y 2 Δ ( t ) | , t J T , we have

P ( t ) α t | h ( τ , Y 1 ( τ ) , Y 1 Δ ( τ ) , α τ h 1 ( τ , z , Y 1 ( z ) , Y 1 Δ ( z ) ) Δ z , α β h 2 ( τ , z , Y 1 ( z ) , Y 1 Δ ( z ) ) Δ z , μ ) h ( τ , Y 2 ( τ ) , Y 2 Δ ( τ ) , α τ h 1 ( τ , z , Y 2 ( z ) , Y 2 Δ ( z ) ) Δ z , α β h 2 ( τ , z , Y 2 ( z ) , Y 2 Δ ( z ) ) Δ z , μ ) | Δ τ + α t | h ( τ , Y 2 ( τ ) , Y 2 Δ ( τ ) , α τ h 1 ( τ , z , Y 2 ( z ) , Y 2 Δ ( z ) ) Δ z , α β h 2 ( τ , z , Y 2 ( z ) , Y 2 Δ ( z ) ) Δ z , μ ) h ( τ , Y 2 ( τ ) , Y 2 Δ ( τ ) , α τ h 1 ( τ , z , Y 2 ( z ) , Y 2 Δ ( z ) ) Δ z , α β h 2 ( τ , z , Y 2 ( z ) , Y 2 Δ ( z ) ) Δ z , μ 0 ) | Δ τ

+ | h ( t , Y 1 ( t ) , Y 1 Δ ( t ) , α t h 1 ( t , z , Y 1 ( z ) , Y 1 Δ ( z ) ) Δ z , α β h 2 ( t , z , Y 1 ( z ) , Y 1 Δ ( z ) ) Δ z , μ ) h ( t , Y 2 ( t ) , Y 2 Δ ( t ) , α t h 1 ( t , z , Y 2 ( z ) , Y 2 Δ ( z ) ) Δ z , α β h 2 ( t , z , Y 2 ( z ) , Y 2 Δ ( z ) ) Δ z , μ ) | + | h ( t , Y 2 ( t ) , Y 2 Δ ( t ) , α t h 1 ( t , z , Y 2 ( z ) , Y 2 Δ ( z ) ) Δ z , α β h 2 ( t , z , Y 2 ( z ) , Y 2 Δ ( z ) ) Δ z , μ ) h ( t , Y 2 ( t ) , Y 2 Δ ( t ) , α t h 1 ( t , z , Y 2 ( z ) , Y 2 Δ ( z ) ) Δ z , α β h 2 ( t , z , Y 2 ( z ) , Y 2 Δ ( z ) ) Δ z , μ 0 ) |

α t L [ P ( τ ) + α τ c 1 ( τ ) s 1 ( z ) P ( z ) Δ z + α β c 2 ( τ ) s 2 ( z ) P ( z ) Δ z ] Δ τ + α t k ( τ ) | μ μ 0 | Δ τ + L [ P ( t ) + α t c 1 ( t ) s 1 ( z ) P ( z ) Δ z + α β c 2 ( t ) s 2 ( z ) P ( z ) Δ z ] + k ( t ) | μ μ 0 | = | μ μ 0 | k ¯ ( t ) + L α t [ P ( τ ) + c 1 ( τ ) α τ s 1 ( z ) P ( z ) Δ z + c 2 ( τ ) α β s 2 ( z ) P ( z ) Δ z ] Δ τ + L [ P ( t ) + α t c 1 ( t ) s 1 ( z ) P ( z ) Δ z + α β c 2 ( t ) s 2 ( z ) P ( z ) Δ z ]

then we have

P ( t ) | μ μ 0 | k ¯ ( t ) 1 L + L 1 L α t { [ c 1 ( t ) s 1 ( τ ) + 1 ] P ( τ ) + c 1 ( τ ) α τ s 1 ( z ) P ( z ) Δ z + c 2 ( τ ) α β s 2 ( z ) P ( z ) Δ z } Δ τ + L 1 L c 2 ( t ) α β s 2 ( z ) P ( z ) Δ z , (3.48)

Now applying theorem 3.1, we have (3.45). □

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Bohner, M. and Georgiev, S.G. (2016) Multivariable Dynamic Calculus on Time Scales. Springer, Berlin. https://doi.org/10.1007/978-3-319-47620-9
[2] Bohner, M. and Peterson, A. (2001) Dynamic Equations on Time Scales: An Introduction with Applications. Springer Science & Business Media. https://doi.org/10.1007/978-1-4612-0201-1
[3] Georgiev, S.G. (2016) Integral Equations on Time Scales, Integral Equations on Time Scales.
https://doi.org/10.2991/978-94-6239-228-1
[4] Pachpatte, D. (2009) On a Nonstandard Volterra Type Dynamic Integral Equation on Time Scales. Electronic Journal of Qualitative Theory of Differential Equations, 72, 1-14.
http://www.kurims.kyoto-u.ac.jp/EMIS/journals/EJQTDE/p459.pdf
https://doi.org/10.14232/ejqtde.2009.1.72
[5] Pachpatte, D.B. (2010) Fredholm Type Integrodifferential Equation on Time Scales. Electronic Journal of Differential Equations (EJDE), 2010, 1-10.
http://www.kurims.kyoto-u.ac.jp/EMIS/journals/EJDE/Volumes/2010/140/pachpatte.pdf
[6] Pachpatte, D.B. (2013) Properties of Some Dynamic Integral Equation on Time Scales. Annals of Functional Analysis, 4, 12–26.
https://doi.org/10.15352/afa/1399899522
http://emis.ams.org/journals/AFA/AFA-tex_v4_n2_a2.pdf
[7] Reinfelds, A. and Christian, S. (2019) Volterra Integral Equations on Unbounded Time Scales. International Journal of Difference Equations, 14, 169-177.
https://doi.org/10.37622/IJDE/14.2.2019.169-177
http://campus.mst.edu/ijde/contents/v14n2p5.pdf
[8] Salih, O.M. and Mahmood, A.H. (2018) Approximate Solutions for Certain Integrodifferential Equations of Volterra_Fredholm Type. International Journal of Enhanced Research in Science, Technology & Engineering, 7, 37-42.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.