Share This Article:

Comparison between Modeling of Cetirizine Solubility Using Different Approaches: Semi-Empirical Density Based Correlations vs. Peng-Robinson EoS

DOI: 10.4236/oalib.1101715    491 Downloads   786 Views   Citations

ABSTRACT

The tunable nature of the solubility of various compounds, including molecules of pharmaceutical and biological interest, in supercritical fluids (SCFs) makes SCF extraction technology attractive for many separation and purification processes. Among the different influencing parameters, the most important one in the supercritical based processes is the knowledge of solubility of model solute. But, experimental measurement of the solubility of all pharmaceuticals in wide ranges of temperature and pressure is not only cost effective but also impossible in some cases. Regarding this fact, during the past decades, several approaches are proposed to model the solubility of the compounds in the supercritical fluids especially carbon dioxide. In this way, in the current investigation, two different approaches including five semi-empirical density based correlations (Mendez-Santiago and Teja (MST), Bartle et al., Chrastil, Kumar and Johnston (KJ) and Hezave et al.) and Peng-Robinson equation of state are used to find if it is possible to correlate the solubility of cetirizine with acceptable deviation as a function of temperature and pressure. The results reveal that among the examined approaches Hezave and Lashkarbolooki model leads to better overall correlative capability with average absolute relative deviation of 5.04% although Peng-Robinson EoS leads to lower AARD % of 3.85 % in 338 K isotherm.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Lashkarbolooki, M. and Hezave, A. (2015) Comparison between Modeling of Cetirizine Solubility Using Different Approaches: Semi-Empirical Density Based Correlations vs. Peng-Robinson EoS. Open Access Library Journal, 2, 1-16. doi: 10.4236/oalib.1101715.

References

[1] Soares da Silva, M., Viveiros, R., Morgado, P.I., Aguiar-Ricardo, A., Correia, I.J. and Casimiro, T. (2011) Development of 2-(Dimethylamino)ethyl Methacrylate-Based Molecular Recognition Devices for Controlled Drug Delivery Using Supercritical Fluid Technology. International Journal of Pharmaceutics, 416, 61-68.
http://dx.doi.org/10.1016/j.ijpharm.2011.06.004
[2] Rita, A., Duarte, C., Sousa Costa, M., Luísa Simplício, A., Margarida Cardoso, M. and Duarte, C.M.M. (2006) Preparation of Controlled Release Microspheres Using Supercritical Fluid Technology for Delivery of Anti-Inflammatory Drugs. International Journal of Pharmaceutics, 308, 168-174.
[3] Papamichail, I., Louli, V. and Magoulas, K. (2000) Supercritical Fluid Extraction of Celery Seed Oil. Original Research Article. The Journal of Supercritical Fluids, 18, 213-226.
http://dx.doi.org/10.1016/S0896-8446(00)00066-8
[4] Rajaei, H., Golchehreh, A.A., Zeinolabedini Hezave, A. and Esmaeilzadeh, F. (2013) Regeneration of Catalyst Clay Soils (Tonsil CO 610 G) by Supercritical Carbon Dioxide. Korean Journal of Chemical Engineering, 30, 842-851.
http://dx.doi.org/10.1007/s11814-013-0006-y
[5] Lee, Y.-N., Chen, C.-R., Yang, H.-L., Lin, C.-C. and Chang, C.-M.J. (2007) Isolation and Purification of 3,5-Diprenyl-4-hydroxycinnamic Acid (Artepillin C) in Brazilian Propolis by Supercritical Fluid Extractions. Separation and Purification Technology, 54, 130-138.
http://dx.doi.org/10.1016/j.seppur.2006.08.028
[6] Esmaeilzadeh, F. and Goodarznia, I. (2005) Supercritical Extraction of Phenanthrene in the Crossover Region. Journal of Chemical & Engineering Data, 50, 49-51.
http://dx.doi.org/10.1021/je049872x
[7] Su, Ch.-Sh. and Chen, Y.-P. (2008) Measurement and Correlation for the Solid Solubility of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) in Supercritical Carbon Dioxide. The Journal of Supercritical Fluids, 43, 438-446.
http://dx.doi.org/10.1016/j.supflu.2007.08.006
[8] Macnaughton, S.J., Kikic, I., Foster, N.R., Alessi, P., Cortesi, A. and Colombo, I. (1996) Solubility of Anti-Inflammatory Drugs in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 41, 1083-1086.
http://dx.doi.org/10.1021/je960103q
[9] Hezave, A.Z., Aftab, S. and Esmaeilzadeh, F. (2012) Solubility of Sulindac in the Supercritical Carbon Dioxide: Experimental and Modeling Approach. The Journal of Supercritical Fluids, 68, 39-44.
http://dx.doi.org/10.1016/j.supflu.2012.04.006
[10] Hezave, A.Z., Khademi, M.H. and Esmaeilzadeh, F. (2012) Measurement and Modeling of Mefenamic Acid Solubility in Supercritical Carbon Dioxide. Fluid Phase Equilibria, 313, 140-147.
http://dx.doi.org/10.1016/j.fluid.2011.09.031
[11] Hezave, A.Z. and Esmaeilzadeh, F. (2012) Solubility Measurement of Diclofenac Acid in the Supercritical CO2. Journal of Chemical & Engineering Data, 57, 1659-1664.
http://dx.doi.org/10.1021/je200012x
[12] Hezave, A.Z. and Esmaeilzadeh, F. (2012) Recrystallization of Micro Particles of Fenoprofen Using Rapid Expansion of Supercritical Solution. Journal of Dispersion Science and Technology, 33, 1106-1115.
http://dx.doi.org/10.1080/01932691.2011.599231
[13] Hezave, A.Z. and Esmaeilzadeh, F. (2012) Precipitation of Micronized Piroxicam Particles via RESS. Journal of Dispersion Science and Technology, 33, 990-999.
http://dx.doi.org/10.1080/01932691.2011.590438
[14] Hezave, A.Z. and Esmaeilzadeh, F. (2012) Fabrication of Micron Level Particles of Amoxicillin by Rapid Expansion of Supercritical Solution. Journal of Dispersion Science and Technology, 33, 1419-1428.
http://dx.doi.org/10.1080/01932691.2011.620883
[15] Hezave, A.Z. and Esmaeilzadeh, F. (2010) Micronization of Drug Particles via RESS Process. The Journal of Supercritical Fluids, 52, 84-98.
http://dx.doi.org/10.1016/j.supflu.2009.09.006
[16] Hezave, A.Z. and Esmaeilzadeh, F. (2010) Investigation of the Rapid Expansion of Supercritical Solution Parameters Effects on Size and Morphology of Cephalexin Particles. Journal of Aerosol Science, 41, 1090-1102.
http://dx.doi.org/10.1016/j.jaerosci.2010.08.004
[17] Hezave, A.Z., Aftab, S. and Esmaeilzadeh, F. (2010) Micronization of Ketoprofen by the Rapid Expansion of Supercritical Solution Process. Journal of Aerosol Science, 41, 821-833.
http://dx.doi.org/10.1016/j.jaerosci.2010.01.006
[18] Hezave, A.Z. and Esmaeilzadeh, F. (2010) Crystallization of Micro Particles of Sulindac Using Rapid Expansion of Supercritical Solution. Journal of Crystal Growth, 312, 3373-3383.
http://dx.doi.org/10.1016/j.jcrysgro.2010.07.033
[19] Hezave, A.Z., Aftab, S. and Esmaeilzadeh, F. (2010) Micronization of Creatine Monohydrate via Rapid Expansion of Supercritical Solution RESS. The Journal of Supercritical Fluids, 55, 316-324.
http://dx.doi.org/10.1016/j.supflu.2010.05.009
[20] Jung, J. and Perrut, M. (2001) Particle Design Using Supercritical Fluids: Literature and Patent Survey. The Journal of Supercritical Fluids, 20, 179-219.
http://dx.doi.org/10.1016/S0896-8446(01)00064-X
[21] Bartle, K.D., Clifford, A.A. and Jafar, S.A. (1991) Solubilities of Solids and Liquids of Low Volatility in Supercritical Carbon Dioxide. Journal of Physical and Chemical Reference Data, 20, 713-757.
http://dx.doi.org/10.1063/1.555893
[22] Gordillo, M.D., Blanco, M.A., Molero, A. and de la Ossa, E.M. (1999) Solubility of the Antibiotic Penicillin G in Supercritical Carbon Dioxide. The Journal of Supercritical Fluids, 15, 183-190.
http://dx.doi.org/10.1016/S0896-8446(99)00008-X
[23] del Valle, J.M. and Aguilera, J.M. (1988) An Improved Equation for Predicting the Solubility of Vegetable Oils in Supercritical CO2. Industrial & Engineering Chemistry Research, 27, 1551-1553.
http://dx.doi.org/10.1021/ie00080a036
[24] Adachi, Y., Lu, B.C.Y. and Sugie, H. (1983) Three Parameter Cubic Equations of State. Fluid Phase Equilibria, 13, 133-142.
http://dx.doi.org/10.1016/0378-3812(83)80087-9
[25] Kumar, S. and Johnston, K.P. (1988) Modelling the Solubility of Solids in Supercritical Fluids with Density as the Independent Variable Supercrit. Fluids, 27, 1551-1553.
[26] Chrastil, J. (1982) Solubility of Solids in Supercritical Gases. The Journal of Physical Chemistry, 86, 3016-3021.
http://dx.doi.org/10.1021/j100212a041
[27] Sparks, D.L., Hernandez, R. and Estévez, L.A. (2008) Evaluation of Density-Based Models for the Solubility of Solids in Supercritical Carbon Dioxide and Formulation of a New Model. Chemical Engineering Science, 63, 4292-4301.
http://dx.doi.org/10.1016/j.ces.2008.05.031
[28] Tabernero, A., del Valle, E.M.M. and Galan, M.A.A. (2010) A Comparison between Semiempirical Equations to Predict the Solubility of Pharmaceutical Compounds in Supercritical Carbon Dioxide. The Journal of Supercritical Fluids, 52, 161-174.
http://dx.doi.org/10.1016/j.supflu.2010.01.009
[29] Housaindokht, M.R. and Bozorgmehr, M.R. (2008) Calculation of Solubility of Methimazole, Phenazopyridine and Propranolol in Supercritical Carbon Dioxide. The Journal of Supercritical Fluids, 43, 390-397.
http://dx.doi.org/10.1016/j.supflu.2007.07.013
[30] Coimbra, P., Duarte, C.M.M. and de Sousa, H.C. (2006) Cubic Equation-of-State Correlation of the Solubility of Some Anti-Inflammatory Drugs in Supercritical Carbon Dioxide. Fluid Phase Equilibria, 239, 188-199.
http://dx.doi.org/10.1016/j.fluid.2005.11.028
[31] Chapman, W.G., Gubbins, K.E., Jackson, G. and Radosz, M. (1989) SAFT: Equation of State Model for Associating Fluids. Fluid Phase Equilibria, 52, 31-38.
http://dx.doi.org/10.1016/0378-3812(89)80308-5
[32] Wong, D.S.H. and Sandler, S.I. (1992) A Theoretically Correct Mixing Rule for Cubic Equations of State. AIChE Journal, 38, 671-680.
http://dx.doi.org/10.1002/aic.690380505
[33] M’endez-Santiago, J. and Teja, A.S. (1999) The Solubility of Solids in Supercritical Fluids. Fluid Phase Equilibria, 158, 501-510.
http://dx.doi.org/10.1016/S0378-3812(99)00154-5
[34] Hojjati, M., Vatanara, A., Yamini, Y., Moradi, M. and Najafabadi, A.R. (2009) Supercritical CO2 and Highly Selective Aromatase Inhibitors: Experimental Solubility and Empirical Correlation. The Journal of Supercritical Fluids, 50, 203-209.
http://dx.doi.org/10.1016/j.supflu.2009.06.015
[35] Hojjati, M., Yamini, Y., Khajeh, M. and Vatanara, A. (2007) Solubility of Some Statin Drugs in Supercritical Carbon Dioxide and Representing the Solute Solubility Data with Several Density Based Correlations. The Journal of Supercritical Fluids, 41, 187-194.
http://dx.doi.org/10.1016/j.supflu.2006.10.006
[36] Sparks, D.L., Hernandez, R. and Estevez, L.A. (2008) Evaluation of Density-Based Models for the Solubility of Solids in Supercritical Carbon Dioxide and Formulation a New Model. Chemical Engineering Science, 63, 4292-4301.
http://dx.doi.org/10.1016/j.ces.2008.05.031
[37] Hezave, A.Z. and Lashkarbolooki, M. (2013) A New Simple Correlation for Calculating Solubility of Drugs in Supercritical Carbon Dioxide. Journal of Theoretical and Computational Chemistry, 12, Article ID: 1350062.
http://dx.doi.org/10.1142/S0219633613500624
[38] Ghalami-Choobar, B., Ghiami-Shomami, A. and Nikparsa, P. (2012) Theoretical Calculation of pKb Values for Anilinies and Sulfonamide Drugs in Aqueous Solution. Journal of Theoretical and Computational Chemistry, 11, 283-295.
http://dx.doi.org/10.1142/S0219633612500307
[39] Zhang, X., Han, X. and Xu, W. (2011) A Computer Simulation Study on Lewis Acid-Base Interactions and Cooperative and C-H Center Dot Center Dot Center Dot O Weak Hydrogen Bonding in Various CO2 Complexes. Journal of Theoretical and Computational Chemistry, 10, 483-508.
http://dx.doi.org/10.1142/S0219633611006591
[40] Lashkarbolooki, M., Sadat Shafipour, Z., Zeinolabedini Hezave, A. and Farmani, H. (2013) Use of Artificial Neural Networks for Prediction of Phase Equilibria in the Binary System Containing Carbon Dioxide. The Journal of Supercritical Fluids, 75, 144-151.
http://dx.doi.org/10.1016/j.supflu.2012.12.032
[41] Lashkarbolooki, M., Zeinolabedini Hezave, A. and Ayatollahi, S. (2012) Artificial Neural Network as an Applicable Tool to Predict the Binary Heat Capacity of Mixtures Containing Ionic Liquids. Original Research Article. Fluid Phase Equilibria, 324, 102-107.
http://dx.doi.org/10.1016/j.fluid.2012.03.015
[42] http://www.doc.ic.ac.uk/-nd/surprise 96/journal/vol4/tcw2/report.html
[43] http://www.cs.cmu.edu/Groups/AI/html/faqs/ai/genetic/part2/faq-doc-2.html
[44] http://www.ai-junkie.com/ga/intro/gat1.html
[45] Robinson, D.B. and Peng, D.Y. (1976) A New Two-Constant Equation of State Industrial and Engineering Chemistry: Fundamentals. Industrial & Engineering Chemistry Fundamentals, 15, 59-64.
http://dx.doi.org/10.1021/i160057a011
[46] Hezave, A.Z., Mowla, A. and Esmaeilzadeh, F. (2011) Cetirizine Solubility in Supercritical CO2 at Different Pressures and Temperatures. The Journal of Supercritical Fluids, 58, 198-203.
http://dx.doi.org/10.1016/j.supflu.2011.05.017
[47] Joback, K.G. and Reid, R.C. (1987) Estimation of Pure-Component Properties from Group-Contributions. Chemical Engineering Communications, 57, 233-243.
http://dx.doi.org/10.1080/00986448708960487
[48] Constantinou, L. and Gani, R. (1994) New Group Contribution Method for Estimating Properties of Pure Compounds. AIChE Journal, 40, 1697-1710.
http://dx.doi.org/10.1002/aic.690401011
[49] Kurnik, R.T. and Reid, R.C. (1981) Solubility Extrema in Solid-Liquid Equilibria. AIChE Journal, 27, 861-863.
http://dx.doi.org/10.1002/aic.690270528
[50] Kraska, T., Leonhard, K.O., Tuma, D. and Schneider, G.M. (2002) Correlation of the Solubility of Low Volatile Organic Compounds in Near- and Supercritical Fluids. Part I: Applications to Adamantane and β-Carotene. The Journal of Supercritical Fluids, 23, 209-224.
http://dx.doi.org/10.1016/S0896-8446(02)00003-7

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.