Applied Mathematics

Volume 7, Issue 16 (October 2016)

ISSN Print: 2152-7385   ISSN Online: 2152-7393

Google-based Impact Factor: 0.58  Citations  

The Equilibrium of Fractional Derivative and Second Derivative: The Mechanics of a Power-Law Visco-Elastic Solid

HTML  XML Download Download as PDF (Size: 4461KB)  PP. 1903-1918  
DOI: 10.4236/am.2016.716156    1,565 Downloads   2,551 Views  

ABSTRACT

This paper investigates the equilibrium of fractional derivative and 2nd derivative, which occurs if the original function is damped (damping of a power-law viscoelastic solid with viscosities η of 0 ≤ η ≤ 1), where the fractional derivative corresponds to a force applied to the solid (e.g. an impact force), and the second derivative corresponds to acceleration of the solid’s centre of mass, and therefore to the inertial force. Consequently, the equilibrium satisfies the principle of the force equilibrium. Further-more, the paper provides a new definition of under- and overdamping that is not exclusively disjunctive, i.e. not either under- or over-damped as in a linear Voigt model, but rather exhibits damping phases co-existing consecutively as time progresses, separated not by critical damping, but rather by a transition phase. The three damping phases of a power-law viscoelastic solid—underdamping, transition and overdamping—are characterized by: underdamping—centre of mass oscillation about zero line; transition—centre of mass reciprocation without crossing the zero line; overdamping—power decay. The innovation of this new definition is critical for designing non-linear visco-elastic power-law dampers and fine-tuning the ratio of under- and overdamping, considering that three phases—underdamping, transition, and overdamping—co-exist consecutively if 0 < η < 0.401; two phases—transition and overdamping—co-exist consecutively if 0.401 < η < 0.578; and one phase— overdamping—exists exclusively if 0.578 < η < 1.

Share and Cite:

Fuss, F. (2016) The Equilibrium of Fractional Derivative and Second Derivative: The Mechanics of a Power-Law Visco-Elastic Solid. Applied Mathematics, 7, 1903-1918. doi: 10.4236/am.2016.716156.

Cited by

No relevant information.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.