Nanocrystalline CuO Thin Films for H2S Monitoring: Microstructural and Optoelectronic Characterization

Abstract

Nanocrystalline copper oxide (CuO) thin films were deposited onto glass substrates by a spin coating technique using an aqueous solution of copper acetate. These films were characterized for their structural, mor-phological, optoelectronic properties by means of X-ray diffraction (XRD) scanning electron microscopy (SEM), UVspectroscopy and four probe method. The CuO films are oriented along (1 1 1) plane with the monoclinic crystal structure. These films were utilized in H2S sensors. The dependence of the H2S response on the operating temperature, H2S concentration of CuO film (annealed at 700C) was investigated. The CuO film showed selectivity for H2S. The maximum H2S response of 25.2 % for the CuO film at gas concentra-tion of 100 ppm at operating temperature 200oC was achieved.

Share and Cite:

V. Patil, D. Jundale, S. Pawar, M. Chougule, P. Godse, S. Patil, B. Raut and S. Sen, "Nanocrystalline CuO Thin Films for H2S Monitoring: Microstructural and Optoelectronic Characterization," Journal of Sensor Technology, Vol. 1 No. 2, 2011, pp. 36-46. doi: 10.4236/jst.2011.12006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] O. Wurzinger and G. Reinhardt, “CO-Sensing Properties of Doped SnO2 Sensors in H2-Rich Gases,” Sensors and Actuators B, Vol. 103, No. 1-2, 2004, pp. 104-110. doi:10.1016/j.snb.2004.04.041
[2] J. Zheng, W. Xiaojuan, Z. Bing, G. Huijiao, L. Tiebing and W. Minghong, “Effects of Electron Beam Irradiation on Tin Dioxide Gas Sensors,” Bulletin of Materials Science, Vol. 31 No. 1, 2008, pp. 83-86. doi:10.1007/s12034-008-0014-4
[3] A. Chaturvedi, V. N. Mishra, R. Dwivedi and S. K. Srivastava, “Selectivity and Sensitivity Studies on Plasma Treated Thick Film Tin Oxide Gas Sensors,” Microelectronics Journal, Vol. 31 No. 4, 2000, pp. 283-290. doi:10.1016/S0026-2692(99)00147-0
[4] E. Comini, A. Cristalli, G. Faglia and G. Sberveglieri, “Light Enhanced Gas Sensing Properties of Indium Oxide and Tin Dioxide Sensors,” Sensors and Actuators B, Vol. 65, No. 1-3, 2000, pp. 260-263. doi:10.1016/S0925-4005(99)00350-0
[5] X. Q. Liu, S. W. Tao and Y. S. Shen, “Preparation and Characterization of Nanocrystalline α-Fe2O3 by a Sol–Gel Process,” Sensors and Actuators B, Vol. 40 No. 2-3, 1997, pp. 161-165. doi:10.1016/S0925-4005(97)80256-0
[6] Y. Zhu, H. Lu, Y. Lu and X. Pan, “Characterization of SnO2 Films Deposited by d.c. Gas Discharge Activating Reaction Evaporation onto Amorphous and Crystallinesubstrates,” Thin Solid Films, Vol. 224, No. 1, 1993, pp. 82-86. doi:10.1016/0040-6090(93)90462-X
[7] C. C. Chai, J. Peng and B. P. Yan, “Preparation and Gas-Sensing Properties of αFe2O3thin Films,” Journal of Electronic Materials, Vol. 24 No. 7, 1995, pp. 799-804. doi:10.1007/BF02653327
[8] B. Balamurugan and B. R. Mehta, “Nanocrystalline Thin Films, Optical Properties. Structural Properties. X-Ray Diffraction,” Thin Solid Films, Vol. 396, No. 1-2, 2001, pp. 90-96. doi:10.1016/S0040-6090(01)01216-0
[9] F. Marabelli, G. B. Parraviciny and F. S. Orioli, “Optical Gap of CuO,” Physical Review B, Vol. 52, No. 3, 1995, pp. 1433-1436. doi:10.1103/PhysRevB.52.1433
[10] J. Ghijsen, L. H. Tjeng, J. V. Elp, H. Eskes, J. Westerink, G. A. Sawatzky and M. T. Czyzyk, “Electronic Structure of Cu2O and CuO,” Physical Review B, Vol. 38, No. 16, 1988, pp. 11322-11330. doi:10.1103/PhysRevB.38.11322
[11] J. R. Oritz, T. Ogura, J. Medina-Valtierra, S. E. Acosta-Ortiz, P. Bosh, J. A. de las Reyes and V. H. Lara, “A Catalytic App.lication of Cu2O and CuO Films Deposited over Fiberglass,” App.lied Surface Science, Vol. 174, No. 3-4, 2001, pp. 177-184.
[12] R. Zhou, T. Yu, X. Jiang, F. Chen and X. Zheng, “Temperature-Programmed Reduction and Temperature-Pro- grammed Desorption Studies of CuO/ZrO2 Catalysts,” App.lied Surface Science, Vol. 148, No. 3-4, 1999, pp. 263-270. doi:10.1016/S0169-4332(98)00369-9
[13] S. Saito, M. Miyayama, K. Kaumoto and H. Yanagida, “Gas Sensing Characteristics of Porous ZnO and Pt/ZnO Ceramics,” Journal of the American Ceramic Society, Vol. 68, No. 1, 1985, pp. 40-43. doi:10.1111/j.1151-2916.1985.tb15248.x
[14] E. Traversa, “New Ceramic Materials for Chemical Sensors,” Journal of Intelligent Material Systems and Structures, Vol. 6, No. 6, 1995, pp. 860-869. doi:10.1177/1045389X9500600615
[15] J. S. Cruz, G. T. Delgado, R. C. Perez, S. J. Sandoval, O. J. Sandoval, C. I. Z. Romero, J. M. Marin and O. Z. Angel, “Dependence of Electrical and Optical Properties of Sol–Gel Prepared Undoped Cadmium Oxide Thin Films on Annealing Temperature,” Thin Solid Films, Vol. 493 No. 1-2, 2005, pp. 83-87. doi:10.1016/j.tsf.2005.07.237
[16] R. Das and S. Ray, “Zinc oxide a transparent, conducting IR-reflector prepared by rf-magnetron sputtering,” J. Phys. D: App.l. Phys, Vol. 36 (2003, pp. 152-155. doi:10.1088/0022-3727/36/2/312
[17] Y. Zhang, G. Du, X. Yang, B. Zhao, Y. Ma, T. Yang, H. C. Ong, D. Liu and S. Yang, “Effect of Annealing on ZnO Thin Films Grown on (001) Silicon Substrate by Low-Pressure Metalorganic Chemical Vapour Deposition,” Semiconductor Science and Technology, Vol. 19, No. 6, 2004, pp. 755-758. doi:10.1088/0268-1242/19/6/017
[18] S. L. Patil, S. G. Pawar, A. T. Mane M. A. Chougule and V. B. Patil, “Nanocrystalline ZnO Thin Films: Optoelectronic and Gas Sensing Properties,” Journal of Materials Science Materials in Electronics, Vol. 21, No. 12, 2010, pp. 1332-1336. doi:10.1007/s10854-010-0071-5
[19] S. T. Shishiyanu, T. S. Shishiyanu and O. I. Lupan, “Novel NO2 Gas Sensor Based on Cuprous Oxide Thin Films,” Sensors and Actuators B, Vol. 113 No. 1, 2006, pp. 468-476.
[20] J. H. Yu and G. M. Choi, “Selective CO Gas Detection of CuO- and ZnO Doped SnO2 Gas Sensor,” Sensors and Actuators B, Vol. 75 No. 1-2, 2001, pp. 56-61. doi:10.1016/S0925-4005(00)00742-5
[21] P. Mitra, J. Physical Sciences, 14, 2010, pp. 235-240.
[22] J. Morales, L. Sanchez, F. Martin, J. R. Ramos-Barrado and M. Sanchez, Thin Solid Films, 474, 205, pp. 133-140.
[23] L. Armelao, D. Barreca, M. Bertapp.elle, G. Boltaro, C. Sada and E. Tondello, “A Sol-Gel App.roach to Nanophasic Copp.er Oxide Thin Films,” Thin Solid Films, Vol. 442, No. 1-2, 2003, pp. 48-52. doi:10.1016/S0040-6090(03)00940-4
[24] K. H. Yoon, W. J. Choi and D. H. Kang, “Photoelectrochemical Properties of Copp.er Oxide Thin Films Coated on an n-Si Substrate,” Thin Solid Films, Vol. 372, No. 1-2, 2000, pp. 250-256. doi:10.1016/S0040-6090(00)01058-0
[25] V. Gupta and A. Mansingh, “Influence of Post-Deposi- tion Annealing on the Structural and Optical Properties of Sputtered Zinc Oxide Film,” Journal of Applied Physics, Vol. 80, No. 2, 1996, pp. 1063-1073. doi:10.1063/1.362842
[26] P. K. Ghosh, R. Maity and K. K. Chattopadhyay, “Electrical and Optical Properties of Highly Conducting CdO: F Thin Film Deposited by Sol-Gel Dip Coating Technique,” Solar Energy Materials and Solar Cells, Vol. 81, No. 2, 2004, pp. 279-289. doi:10.1016/j.solmat.2003.11.021
[27] K. Gurumurugan, D. Mangalaraj, S. K. Narayandass and Y. Nakanishi, “DC Reactive Magnetron Sputtered CdO Thin Films,” Materials Letters, Vol. 28, No. 4-6, 1996, pp. 307-312. doi:10.1016/0167-577X(96)00074-2
[28] M. Ghosh and C. N. R. Rao, “Solvothermal Synthesis of CdO and CuO Nanocrystals,” Chemical Physics Letters, Vol. 393, No. 4-6, 2004, pp. 493-497. doi:10.1016/j.cplett.2004.06.092
[29] S. G. Pawar, S. L. Patil, M. A. Chougule and V. B. Patil, “Synthesis and Characterization of Nanocrystalline TiO2 Thin Films,” Journal of Materials Science: Materials in Electronics, Vol. 22, No. 3, 2011, pp. 260-264. doi:10.1007/s10854-010-0125-8
[30] Y. K. Jeong and G. M. Choi, “Nonstoichiometry and Electrical Conduction of CuO,” Journal of Physics and Chemistry of Solids, Vol. 57, No. 1, 1996, pp. 81-84. doi:10.1016/0022-3697(95)00130-1
[31] J. H. Lee, K. H. Ko and B. O. Park, “Electrical and Optical Properties of ZnO Transparent Conducting Films by the Sol–Gel Method,” Journal of Crystal Growth, Vol. 247, No. 1-2, 2003, pp. 119-125. doi:10.1016/S0022-0248(02)01907-3
[32] R. Hong, et al., “Influence of Different Post-Treatments on the Structure and Optical Properties of Zinc Oxide Thin Films” App.lied Surface Science, Vol. 242, No. 3-4, 2005, pp. 346-352. doi:10.1016/j.apsusc.2004.08.037
[33] A. M. Chaparro, et al., “SnO2 Substrate Effects on the Morphology and Composition of Chemical Bath Deposited ZnSe Thin Films,” Thin Solid Films, Vol. 361-362, 2000, pp. 177-182. doi:10.1016/S0040-6090(99)00791-9
[34] D. H. Bao, et al., “Band-Gap Energies of Sol-Gel-De- rived SrTiO3 Thin Films,” App.lied Physics Letters, Vol. 79, No. 23, 2001, pp. 3767-3772. doi:10.1063/1.1423788
[35] M. Mabrook and P. Hawkins, “A Rapidly-Responding Sensor for Benzene, Methanol and Ethanol Vapours Based on Films of Titanium Dioxide Dispersed in a Polymer Operating at Room Temperature,” Sensors and Actuators B: Chemical, Vol. 75, No. 3, 2001, pp. 197-202. doi:10.1016/S0925-4005(01)00761-4
[36] G. Martinelli, M. C. Carotta, M. Ferroni, Y. Sadaoka and E. Traversa, “Screen-Printed Perovskite-Type Thick Films as Gas Sensors for Environmental Monitoring,” Sensors and Actuators B: Chemical, Vol. 55, No. 2-3, 1999, pp. 99-110. doi:10.1016/S0925-4005(99)00054-4
[37] Y. Wang, J. Chen and X. Wu, “Preparation and Gas- Sensing Properties of Perovskite-Type SrFeO3 Oxide,” Materials Letters, Vol. 49, No. 6, 2001, pp. 361-364.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.