Silica matrix doped with calcium and phosphate by sol-gel
Lucimara C. Bandeira, Katia J. Ciuffi, Paulo S. Calefi, Eduardo J. Nassar
.
DOI: 10.4236/abb.2010.13028   PDF    HTML     5,533 Downloads   11,054 Views   Citations

Abstract

Silica matrices doped with calcium and phosphate at various Ca/P molar ratios were prepared by the hydrolytic sol-gel methodology. Tetraethylorthosilicate (TEOS) was reacted with calcium ethoxide, in the presence of phosphoric acid as catalyst. Eu III ions were added to the resulting silica, in order to obtain structural information. The samples were dried at 50ºC and characterized before and after contact with Simulated Body Fluid (SBF). The xerogels were analyzed by thermal analysis (TA), X-ray diffraction (XRD), photoluminescence (PL), and scanning electron microscopy (SEM). The PL spectra revealed Eu III lines characteristic of the 5D0 ? 7FJ (J = 0, 1, 2, 3, 4) transition of this ion, and they indicated a nonhomogenous distribution of Eu III in the Ca-P-Si matrix. XRD and SEM confirmed the presence of an amorphous and crystalline system before and after contact of the samples with the SBF solution, and the crystalline phases were ascribed to hydroxyapatite and? ?-calcium triphosphate. The goal of the work is the preparation of a material can be used as biomaterias at low temperature.

Share and Cite:

Bandeira, L. , Ciuffi, K. , Calefi, P. and Nassar, E. (2010) Silica matrix doped with calcium and phosphate by sol-gel. Advances in Bioscience and Biotechnology, 1, 200-207. doi: 10.4236/abb.2010.13028.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Jaeger, C., Groom, N.S., Bowe, E.A., Horner, A., Davies, M.E., Murray, R.C. and Duer, M.J. (2005) Investigation of the nature of the protein-mineral interface in bone by solid-state NMR. Chemistry of Materials, 17(12), 3059- 3061.
[2] Kawachi, E.Y., Bertran, C.A., Reis, R.R. dos and Alves, O.L. (2000) Bioceramicas: tendências e perspectivas de uma área interdisciplinar. Química Nova, 23(4), 518-522.
[3] Jillavenkatesa, A. and Condrate SR, R.A. (1998) Sol-gel processing of hydroxyapatite. Journal of Materials Science, 33(16), 4111-4119.
[4] Pietak, A.M. and Sayer, M. (2006) Functional atomic force microscopy investigation of osteopontin affinity for silicon stabilized tricalcium phosphate bioceramic surfaces. Biomaterials, 27(1), 3-14.
[5] Cho, S., Nakanishi, K., Kokubo, T., Soga, N., Ohtsuki, C. and Nakamura, T. (1996) Apatite formation on silica gel in simulated body fluid: Its dependence on structures of silica gels prepared in different media. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 33(3), 145-151.
[6] Cheng, K., Zhang, S. and Weng, W. (2006) Sol-gel preparation of fluoridated hydroxyapatite in Ca(NO3)2- PO(OH)3?x(OEt)x-HPF6 system. Journal of Sol-Gel Science and Technology, 38(1), 13-17.
[7] Arcos, E., Pena, J. and Vallet-Regí, M., (2003) Influence of a SiO2-CaO-P2O5 sol-gel glass on the bioactivity and controlled release of ceramic/polymer/antibiotic mixed materials. Chemistry of Materials, 15(21), 4132-4138.
[8] Lee, H.J., Choi, H.W., Kim, K.J. and Lee, S.C. (2006) Modification of hydroxyapatite nanosurfaces for enhan- ced colloidal stability and improved interfacial adhesion in nanocomposites. Chemistry of Materials, 18(21), 5111-5118.
[9] Andrade, A.L. and Domingues, R. (2006) Ceramicas bioativas: estado da arte. Química Nova, 29(1), 100-104.
[10] Rámila, A., Padilla, P., Mu?oz, B. and Vallet-Regí, M. (2002) A new hydroxyapatite/glass biphasic material: In vitro bioactivity. Chemistry of Materials, 14(6), 2439- 2443.
[11] Do?an, ?. and ?ner, M. (2006) Biomimetic mineralization of hydroxyapatite crystals on the copolymers of vinylphosphonic acid and 4-vinilyimidazole. Langmuir, 22 (23), 9671-9675.
[12] Iwatsubo, T., Sumaru, K., Kanamori, T., Shinbo, T. and Yamaguchi, T. (2006) Construction of a new artificial biomineralization system. Biomacromolecules, 7(1), 95- 100.
[13] Bandeira, L.C., Avila, L.R., Cestari, A., Calefi, P.S., Ciuffi, K.J., Nassar, E.J., Salvado, I.M. and Fernandes, M.H.F.V. (2010) Ceramica submitted.
[14] Vallet-Regí, M. and Rámila, A. (2000) New bioactive glass and changes in porosity during the growth of a carbonate hydroxyapatite layer on glass surfaces. Chemistry of Materials, 12(4), 961-965.
[15] Hench, L.L. (1998) Sol-gel silica: properties, processing and technology transfer. Noyes Publications.
[16] Kokubo, T. (1991) Bioactive glass ceramics: Properties and applications. Biomaterials, 12(1), 155-163.
[17] Park, E., Condrate, R.A., Lee, D., Kociba, J. and Gallagher, P.K. (2002) Journal of Material Science: Materials in Medicine, 13, 211.
[18] Petil, O., Zanotto, E.D. and Hench, L.L. (2001) Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics. Journal of Non-Crystalline Solids, 292(1-3), 115-126.
[19] Li, J., Chem, Y., Yin, Y., Yao, F. and Yao, K. (2007) Modulation of nano-hydroxyapatite size via formation on chitosan–gelatin network film in situ. Biomaterials, 28(5), 781-790.
[20] Kake, M.A., Joshi, C.P., Moharil, S.V., Muthal, P.L. and Dhopte, S.M. (2008) Luminescence in LaCaAl3O7 prepared by combustion synthesis. Journal of Luminescence, 128(7), 1225-1228.
[21] Ravichandran, D., Roy, R., Chaklowskoi, A.G., Hunt, C.E., White, W.B. and Erdei, S. (1997) Fabrication of Y3Al5O12:Eu thin films and powders for field emission display applications. Journal of Luminescence, 71(4), 291-297.
[22] Bao, A., Tao, C. and Yong, H., (2007) Synthesis and luminescent properties of nanoparticles GdCaAl3O7:RE3+ (RE=Eu, Tb) via the sol-gel method. Journal of Luminescence, 126(2), 859-865.
[23] Ternane, R., Trabelsi-Ayedi, M., Kbir-Ariguib, N. and Piriou, B. (1999) Luminescent properties of Eu3+ in calcium hydroxyapatite. Journal of Luminescence, 81(3), 165-170.
[24] Jagannathan, R. and Kottaisamy, M. (1995) Eu3+ luminescence: A spectral probe in M5(PO4)3X apatites (M=Ca or Sr; X=F-, Cl-, Br- or OH-). Journal of Physics: Condensed Matter, 7(44), 8453-8466.
[25] Piriou, B., Fahmi, D., Dexpert-Ghys, J., Taitai, A. and Lacout, J.L. (1987) Unusual fluorescent properties of Eu3+ in oxyapatites. Journal of Luminescence, 39(2), 97-103.
[26] Mehanaoui, M., Panczer, G., Ternane, R., Trabelsi-Ayedi, M. and Boulon, G. (2008) Structural and spectroscopic characterizations in Pb2+-doped calcium hydroxyapatites. Optical Materials, 30(11), 1672-1676.
[27] Yang, Y., Ren, Z., Tao, Y., Cui, Y. and Yang, H. (2009) Eu3+ emission in SrAl2B2O7 based phosphors. Current Applied Physics, 9(3), 618-621.
[28] Lin, H., Yang, D., Liu, G., Ma, T., Zhai, B., An, Q., Yu, J., Wang, X., Liu, X. and Pun, E.Y-B. (2005) Optical absorption and photoluminescence in Sm3+- and Eu3+- doped rare-earth borate glasses. Journal of Luminescence, 113(1-2), 121-128.
[29] Krebs, J.K. and Brownstein, J.M. (2007) Site-selective spectroscopy of Eu3+ in bioactive glass. Journal of Luminescence, 124(2), 257-259.
[30] Krebs, J.K., Brownstein, J.M. and Gibides, J.T. (2008) Decay dynamics of europium excited states in bioactive glasses. Journal of Luminescence, 128(5-6), 780-782.
[31] Hazenkamp, M.F., Van der Veen, A.M.H., Feiken, W. and Blasse, G. (1992) Hydrated rare-earth-metal ion-exchang- ed zeolite a: Characterization by luminescence spectroscopy. Part 2—The Eu3+ ion. Journal of the Chemical Society, Faraday Transactions, 88(1), 141-144.
[32] Rice, D.K., Deshaser, L.G. (1969) Spectral broadening of europium ions in glass. Physics Review B, 186(2), 387-392.
[33] Reisfeld, R. (1984) Fluorescence and non-radiative relaxations of rare earths in amorphous media and on high surface area supports: A review. Journal of the Electrochemical Society, 131(6), 1360-1364.
[34] Blasse, G. (1990) Interaction between optical centers and their surroundings: An inorganic chemist’s approach. Advances in Inorganic Chemistry, 35, 319-402.
[35] Richardson, F.S. (1982) Terbium(III) and Europium(III) ions as luminescent probes and stains for biomolecular systems. Chemical Reviews, 82, 541-552.
[36] Reisfeld, R. (1973) Spectra and energy transfer of rare earths in inorganic glasses. Structure and Bonding, 13, 53-98.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.