Applied Mathematics, 2011, 2, 1443-1445
doi:10.4236/am.2011.212204 Published Online December 2011 (http://www.SciRP.org/journal/am)
Copyright © 2011 SciRes. AM
Inverse Eigenvalue Problem for Gen eralized
Arrow-Like Matrices
Zhibin Li, Cong Bu, Hui Wang
College of Mathematics, Dalian Jiaotong University, Dalian, China
E-mail: lizhibinky@163.com
Received October 14, 2011; revised November 15, 2011; accepted November 23, 2011
Abstract
This paper researches the following inverse eigenvalue problem for arrow-like matrices. Give two character-
istic pairs, get a generalized arrow-like matrix, let the two characteristic pairs are the characteristic pairs of
this generalized arrow-like matrix. The expression and an algorithm of the solution of the problem is given,
and a numerical example is provided.
Keywords: Generalized Arrow-Like Matrices, Characteristic Value, Inverse Problem, Unique
1. Introduction
The Inverse eigenvalue problem for matrices in the pro-
blems involved in the field of structural design, pattern
recognition, parameter recognition, automatic control
and so on, it has a good engineering background, and its
research has obvious significance [1]. Many experts and
scholars have addressed more extensively and in-depth
studied, get a lot of conclusions about inverse eigenvalue
problem for Jacobi matrices [2], but there is less research
about the inverse eigenvalue problem for arrow- like
matrices [3,4]. This paper researches the following in-
verse eigenvalue problem for generalized arrow-like ma-
trices.
Generalized arrow-like matrices refer to the matrix as
follows:
11 1
12
1
11
12
1
1
mm
mm
mmm
mm
n
nn
abb b
ca
ca
Jcab
ca
b
ca
















(1)
When ,
1m
J
becomes generalized Jacobi matrix
[1]; when , mn
J
is an arrow-like matrice. This
article studies the following characteristic value inverse:
Question IEPGAM. Given two real numbers
,( )
 
and two nonzero real vectors
T
12
(, ,, ),
n
n
x
xx xRT
12
(, , ,)n
n
y
yy yR.
Find the nn
real generalized arrow-like matrice
J
,
ch that su,
J
xxJyy
(,)
.
The expression and an algorithm of the solution of th e
problem is given in Section 2, and a numerical example
is provided in Section 3.
2. The Solution of Question IEPGAM
Because
and (,)y
are two characteristic pairs
of the generalized arrow-like matrices
J
,
In it,
Let:
010nn
xx yy
100 0
nn
bbcc
 , (2)
11
(0,1,,)
ii
iii
xy
Di
xy

n,
(3)
1
1
(2,3,, 1
i
ii
xx
Eim
yy )
(4)
So
11 12111
+b mm mm
axxbxb xx

, (5-1)
112 22
+cx axx
, (5-2)
11
+
mmm
cxax x
m
111 12mmm mm
axb x
, 5-m
1
+m
cx x

2 22 3m mm m
ax bx
, (5-m+1)
11
+
mm
cx x
2m
 
, (5-m+2)
Z. B. LI ET AL.
1444
122 111
+
n nnnnnn
cx axbxx
 

11
+
nn nn
cx ax
, (5-n–1)
n
x
 . (5-n)
11 12111
+b mm mm
ayybyb yy

 
112 22
+cy ayy
, (6-1)
, (6-2)
11mmm
cyay y
m
, (6-m)
11112mmmmm m
cyaybyy1
 

112 22 3mmm mm mm
cy aybyy
, (6-m+1)
2
  

, (6-m+2)
2211 1nnnn nnn
cyay byy
1


11nn nnn
cy ayy
, (6-n–1)

. (6-n)
For inverse
.
,(1,2,,1),
ii
bci mmn 
,3,,)m n(2ai m
i
From (5) and (6), we can get
11 1
+(2,
iiii iii
cxaxbxxi mmn3,,)
 

11 1
+(2,
iiiiiii
cyay byyimmn
, (7)
3,,)
 
. (8)
In order to eliminate , multiply by i on both
sides of (7), multiply by i
i
a y
x
on both sides of (8), then
cut on both sides, we can get
i11
=()+(2,3,, )
iiiii
bDxyc Dimmn

. (9)
To problem A, because ,(2,3, ,1)
ii
ckbin
, so
(9) become
1
()
(2,3,,)
iiiii i
bDxykb D
im mn


 
 
1
(10)
Let , because , so
in0
n
D
n
11 ()
n
nn
xy
bD k


1in
,
Let , -1 1
22 2
()
nnnn
nn
xyx y
bD k
k



 


;
…………
Let , 2im
11+2 2
11 (1) (2)
()
nnn nmm
mm nmnm
xyx yxy
bD k
kk

 
  




Under normal circums ta n ce s,
(1)
()
0
()( 1,2,,
nj ns ns
jj nsj
s
xy
bDj mmn
k

 

 
1).
(11)
If , then 0 (1,2,,1)
j
Djmm n ,
ii
x
y can
not be zero at the same time ,so
(1)
()
0
() (1,2,,
nj ns ns
jnsj
s
j
xy
bjmm
Dk

 


1)
n
,
(12)
c=,(1,2, ,1)
jj
kbj mmn
 , (13)
11 1
11 1
,0
,0
(2,3,,)
jjjjj j
j
jjjjjj j
j
xcxbx x
x
aycybyy
y
jm mn
 
 


 
;
. (14)
For inverse ,,.
1mmm
From (5) and the m + 1 equation o f (6),
acb
+11 111
=( )+
mmm mmm
cExyb D
 
, (15)
1m+111111m+2
=
mmmm
aE xyxybE

 , (16)
m
m
c
bk
. (17)
For inverse 1,,(2,3, ,1)
ii
ccbi m
,,)m,
(2,3ai
i
.
From (5) and 2 to m equation of (6),
11
+(2,3,
iiii
cxax xim,)
, (18)
11
+(2,3,
iiii
cyay yim,)
. (19)
From (18) and (19), we can get
1i
=()(2,3,,)
iii
cE xyim
, (20)
i11
=(2,3,
iii
aExyxy im,)
, (21)
(2,3,, 1)
i
i
c
bi m
k
. (22)
For inverse ,ab.
11
From (5) and (6), we can get
11 1211
2
+m
s
s
s
ax bxxbx

, (23)
11 1211
2
+m
s
s
s
ay byyby

. (24)
If 10D
, from (23) and (24), then we can get
1221122 1
2
11
()
m
ss s
s
xyxyb xyxy
aD


 
, (25)


11111 1
2
11
m
sss
s
xyb yxyx
bD


 
. (26)
According to the above analysis, to question IEPGAM,
we can get the follow theorem.
Theorem. If the following conditions are satisfied:
1) 10D
;
2) 0 (Di1,2, ,1)
imm n
 
0 (2, 3,,1)Ei m;
3) i

Then question IEPGAM has the unique solution, and
Copyright © 2011 SciRes. AM
Z. B. LI ET AL.
Copyright © 2011 SciRes. AM
1445
(1)
()
0
() (1,2,,
nj nsns
jnsj
s
j
xy
bjmm
Dk

 


1)
n
(27) 112 3113
11
() ()
7
4
xyb yxyx
bD

 
 ;
11 1
111
,0
,0
(2,3,,)
jjjjjj
j
jjjjjjj
j
xcxbx x
x
aycyby y
y
jm mn
 
 


 
22
3
2
ckb
 ,
;
, (28)
33
1
3
ckb
 ,
44
0ckb
,
22
12
()
=0
xy
cE

;
111 1
+1
()+
=mmm m
mm
xy bD
bkE

 
, (29)
12 23
11
7
2
bx bx
ax
,
1111 1m+2
1+1
=mm m
mm
xyxyb E
aE


 , (30)
12 21
22
=1
xy xy
aE

,
11
+1
()
=(2,3,
jj
jj
xy
bi
kE


,1)m
, (31)
13313 4
33
8
=3
xyxy bE
aE


,
111111
2
11
() (
m
sss
s
xyb yxyx
bD



)
( 32) 43345
44
4
=3
xcxbx
ax

,
11
=(2,3,
jj
jj
xy xy
aj
E

,)m
, (33) 54456
55
=1
xcxbx
ax

.
1
11
1
1
1
1
1
,0
,0
m
ss
s
m
ss
sj
bx
x
x
a
by
y
y


So 773
00
24400
010
381
00
236
14
00 0
33
000 01
J














;
)
(34)
=,(2,3,,1
jj
ckbin, (35)
22
12
()
=
x
y
cE

. (36)
and ,
J
xxJyy
.
3. Numerical Examples 4. References
Example 1. Give 1,2, 2,2, 5,kmn
 
TT
(1,0,2,1,0) . [1] D. J. Wang, “Inverse Eigenvalue Problem in Structural
Dynamics,” Journal of Vibration and Shock, No. 2, 1988,
pp. 31-43.
(1,1,1,1,1) ,xy
It is easy to be calculated
124
10,30, 10DDD  ; [2] H. Dai, “Inverse Eigenvalue Problem for Jacobi Matri-
ces,” Computation Physics, Vol. 11, No. 4, 1994, pp.
451-456.
234
10, 10,2.EEE
From Theorem, the question IEPGAM has the unique
solution. And
55 44
32
3
1
+=
6
xy xy
bDk
k





,
[3] C. H. Wu and L. Z. Lu, “Inverse Eigenvalue Problem for
a Kind of Special Matrix,” Journal of Xiamen University
(Natural Science), No. 1, 2009, pp. 22-26.

23333
3
1
() 4
bxybD
kE


3
,
[4] Q. X. Yin, “Generalized Inverse Eigenvalue Problem for
Arrow-Like Matrices,” Journal of Nan Jing University of
Aeronautics & Astronautics, Vol. 34, No. 2, 2002, pp.
190-192.
55
44
0
xy
bDk





,