On Prime Numbers between kn and (k + 1) n
Wing K. Yu
Independent Researcher, Arlington, USA.
DOI: 10.4236/jamp.2023.1111234   PDF    HTML   XML   55 Downloads   350 Views  

Abstract

In this paper along with the previous studies on analyzing the binomial coefficients, we will complete the proof of a theorem. The theorem states that for two positive integers n and k, when nk - 1, there always exists at least a prime number p such that kn < p ≤ (k +1)n. The Bertrand-Chebyshev’s theorem is a special case of this theorem when k = 1. In the field of prime number distribution, just as the prime number theorem provides the approximate number of prime numbers relative to natural numbers, while the new theory indicates that prime numbers exist in the specific intervals between natural numbers, that is, the new theorem provides the approximate positions of prime numbers among natural numbers.

Share and Cite:

Yu, W. (2023) On Prime Numbers between kn and (k + 1) n. Journal of Applied Mathematics and Physics, 11, 3712-3734. doi: 10.4236/jamp.2023.1111234.

1. Introduction

The Bertrand-Chebyshev’s theorem states that for any positive integer n, there always exists a prime number p such that n < p 2 n . Pafnuty Chebyshev proved this in 1850 [1] . In 2006, M. El Bachraoui [2] extended the theorem and proved that for any positive integer n, there exists a prime number p such that 2 n < p 3 n . In 2011, Andy Loo [3] proved that when n ≥ 2, there are prime numbers in the interval (3n, 4n). In 2013, Vladimir Shevelev et al. [4] proved that when the integer k ≤ 100,000,000, only k = 1, 2, 3, 5, 9, 14, for all n ≥ 1, the interval (kn, (k + 1)n) contains prime numbers. This raises the question: for all k ≥ 1, under what conditions does the interval (kn, (k + 1)n) contain prime numbers? Previously, the author partially answered this question in the paper [5] by

analyzing the binomial coefficients ( λ n n ) where λ is a positive integer. In that

paper, the author proved that when n λ 2 25 , i.e., when n λ 2 and λ 27 , there exists at least a prime number p such that ( λ 1 ) n < p λ n . In this article, we will use the same method to complete the entire work on this problem. We will prove that when n λ 2 and λ 3 , there exists at least a prime number p such that ( λ 1 ) n < p λ n . Then, by converting λ to k, we prove that for two positive integers n and k, when n k 1 , there is always at least a prime number p such that k n < p ( k + 1 ) n . The Bertrand-Chebyshev’s theorem is a special case of this theorem when k = 1.

We will use the same definition and concepts from [5] in this section and in section 2. In section 3, we will prove that for λ from 3 to 26, when n λ 2 , there exists at least a prime number p such that ( λ 1 ) n < p λ n . In section 4, we will convert λ to k, and complete this article.

Definition: Γ a p > b { ( λ n n ) } denotes the prime number factorization operator of the integer expression ( λ n n ) . It is the product of the prime numbers in the decomposition of ( λ n n ) in the range of a p > b . In this operator, p is a prime number, a and b are real numbers, and λ n a p > b 1 .

It has some properties:

It is always true that Γ a p > b { ( λ n n ) } 1 (1.1)

If there is no prime number in ( λ n n ) within the range of a p > b , then Γ a p > b { ( λ n n ) } = 1 , or vice versa, if Γ a p > b { ( λ n n ) } = 1 , then there is no prime number in ( λ n n ) within the range of a p > b . (1.2)

For example, when λ = 5 and n = 4 , Γ 16 p > 10 { ( 20 4 ) } = 13 0 11 0 = 1 . No prime number 13 or 11 is in ( 20 4 ) within the range of 16 p > 10 .

If there is at least one prime number in ( λ n n ) in the range of a p > b , then Γ a p > b { ( λ n n ) } > 1 , or vice versa, if Γ a p > b { ( λ n n ) } > 1 , then there is at least one prime number in ( λ n n ) within the range of a p > b . (1.3)

For example, when λ = 5 and n = 4 , Γ 18 p > 16 { ( 20 4 ) } = 17 > 1 . A prime number 17 is in ( 20 4 ) within the range of 18 p > 16 .

Let v p ( n ) be the p-adic valuation of n, the exponent of the highest power of p that divides n.

We define R ( p ) by the inequalities p R ( p ) λ n < p R ( p ) + 1 , and determine the p-adic valuation of ( λ n n ) .

v p ( ( λ n n ) ) = v p ( ( λ n ) ! ) v p ( ( ( λ 1 ) n ) ! ) v p ( n ! ) = i = 1 R ( p ) ( λ n p i ( λ 1 ) n p i n p i ) R ( p )

because for any real numbers a and b , the expression of a + b a b is 0 or 1.

Thus, if p divides ( λ n n ) , then v p ( ( λ n n ) ) R ( p ) log p ( λ n ) , or p v p ( ( λ n n ) ) p R ( p ) λ n (1.4)

If n p > λ n , then 0 v p ( ( λ n n ) ) R ( p ) 1 . (1.5)

Let π ( n ) be the number of distinct prime numbers less than or equal to 𝑛. Among the first six consecutive natural numbers are three prime numbers 2, 3, and 5. Then, for each additional six consecutive natural numbers, at most one

can add two prime numbers, p 1 ( MOD 6 ) and p 5 ( MOD 6 ) . Thus, π ( n ) n 3 + 2 n 3 + 2 . (1.6)

From the prime number decomposition, when n > λ n ,

( λ n n ) = Γ λ n p > n { ( λ n ) ! n ! ( ( λ 1 ) n ) ! } Γ n p > λ n { ( λ n ) ! n ! ( ( λ 1 ) n ) ! } Γ λ n p { ( λ n ) ! n ! ( ( λ 1 ) n ) ! }

When n λ n , ( λ n n ) Γ λ n p > n { ( λ n ) ! n ! ( ( λ 1 ) n ) ! } Γ λ n p { ( λ n ) ! n ! ( ( λ 1 ) n ) ! }

Thus, ( λ n n ) Γ λ n p > n { ( λ n ) ! n ! ( ( λ 1 ) n ) ! } Γ n p > λ n { ( λ n ) ! n ! ( ( λ 1 ) n ) ! } Γ λ n p { ( λ n ) ! n ! ( ( λ 1 ) n ) ! }

Γ λ n p > n { ( λ n ) ! n ! ( ( λ 1 ) n ) ! } = Γ λ n p > n { ( λ n ) ! ( ( λ 1 ) n ) ! } since all prime numbers in n ! do not appear in the range of λ n p > n .

If n λ 2 , and there is a prime number p in Γ λ n p > n { ( λ n ) ! ( ( λ 1 ) n ) ! } , then p n + 1 = ( n + 2 ) n + 1 > λ n . From (1.5), 0 v p ( Γ λ n p > n { ( λ n ) ! ( ( λ 1 ) n ) ! } ) R ( p ) 1 . Thus, if n λ 2 , every prime number in Γ λ n p > n { ( λ n ) ! ( ( λ 1 ) n ) ! } has a power of 0 or 1. (1.7)

Referring to (1.5), Γ n p > λ n { ( λ n ) ! n ! ( ( λ 1 ) n ) ! } n p p . It has been proven [6] that for n 3 , n p p < 2 2 n 3 .

When n = 2 , n p p = 2 2 n 3 , then for n 2 , Γ n p > λ n { ( λ n ) ! n ! ( ( λ 1 ) n ) ! } n p p 2 2 n 3 .

Referring to (1.4) and (1.6), Γ λ n p { ( λ n ) ! n ! ( ( λ 1 ) n ) ! } ( λ n ) λ n 3 + 2 .

Thus, for λ 3 and n 2 , ( λ n n ) Γ λ n p > n { ( λ n ) ! ( ( λ 1 ) n ) ! } 2 2 n 3 ( λ n ) λ n 3 + 2 (1.8)

2. Lemmas

Lemma 1: For λ 3 and n 2 , Γ λ n p > n { ( λ n ) ! ( ( λ 1 ) n ) ! } > 2 λ 2 ( λ 4 ( λ λ 1 ) λ 1 ) n 1 ( λ n ) λ n 3 + 3 = f 8 ( n , λ ) (2.1)

Proof:

Let a real number x 3 , and f 1 ( x ) = 2 ( 2 x 1 ) x 1 ; then, f 1 ( x ) = 2 ( x 1 ) ( 2 x 1 ) 2 ( 2 x 1 ) ( x 1 ) ( x 1 ) 2 = 2 ( x 1 ) 2 < 0 .

Thus, f 1 ( x ) is a strictly decreasing function for x 3 .

Since f 1 ( 3 ) = 5 , and lim x f 1 ( x ) = 4 , for x 3 , we have 5 f 1 ( x ) = 2 ( 2 x 1 ) x 1 4 .

Let f 2 ( x ) = ( x x 1 ) x , then f 2 ( x ) = ( ( x x 1 ) x ) = ( e x ln x x 1 ) = e x ln x x 1 ( x ln x x 1 )

f 2 ( x ) = ( x x 1 ) x ( ln x x 1 + x ( ln x x 1 ) ) = ( x x 1 ) x ( ln x x 1 + x x 1 x x 1 x ( x 1 ) 2 )

f 2 ( x ) = ( x x 1 ) x ( ln x x 1 1 x 1 ) (2.1.1)

In (2.1.1), for x 3 , 1 x 1 = 1 x + 1 x 2 + 1 x 3 + 1 x 4 + 1 x 5 + 1 x 6 +

Using the formula: ln ( 1 + x ) = x x 2 2 + x 3 3 x 4 4 + x 5 5 x 6 6 + , we have

ln x x 1 = ln 1 1 + 1 x = ln ( 1 + 1 x ) = 1 x + 1 2 x 2 + 1 3 x 3 + 1 4 x 4 + 1 5 x 5 + 1 6 x 6 +

Thus, for x 3 , ln x x 1 1 x 1 < 0 .

Since ( x x 1 ) x is a positive number for x 3 , f 2 ( x ) = ( x x 1 ) x ( ln x x 1 1 x 1 ) < 0 .

Thus f 2 ( x ) is a strictly deceasing function for x 3 . Since f 2 ( 3 ) = 3.375 and lim x f 2 ( x ) = e 2.718 , for x 3 , 3.375 f 2 ( x ) = ( x x 1 ) x e (2.1.2)

Since for x 3 , f 1 ( x ) has a lower bound of 4 and f 2 ( x ) has an upper bound of 3.375,

f 1 ( x ) = 2 ( 2 x 1 ) x 1 > f 2 ( x ) = ( x x 1 ) x

When x = λ 3 , we have 2 ( 2 λ 1 ) λ 1 > ( λ λ 1 ) λ (2.1.3)

When λ 3 and n = 2 , ( λ n n ) = ( 2 λ 2 ) = 2 λ ( 2 λ 1 ) ( 2 λ 2 ) ! 2 ( 2 λ 2 ) ! = λ ( 2 λ 1 ) (2.1.4)

λ λ n λ + 1 n ( λ 1 ) ( λ 1 ) n λ + 1 = λ 2 λ λ + 1 2 ( λ 1 ) 2 ( λ 1 ) λ + 1 = λ ( λ 1 ) 2 ( λ λ 1 ) λ (2.1.5)

Since λ ( λ 1 ) 2 is a positive number for λ 3 , referring to (2.1.4) and (2.1.5), when λ ( λ 1 ) 2 multiplies both sides of (2.1.3), we have

( λ ( λ 1 ) 2 ) ( 2 ( 2 λ 1 ) λ 1 ) = λ ( 2 λ 1 ) = ( λ n n ) > ( λ ( λ 1 ) 2 ) ( λ λ 1 ) λ = λ λ n λ + 1 n ( λ 1 ) ( λ 1 ) n λ + 1

Thus, ( λ n n ) > λ λ n λ + 1 n ( λ 1 ) ( λ 1 ) n λ + 1 when λ 3 and n = 2 . (2.1.6)

By induction on n, when λ 3 , if ( λ n n ) > λ λ n λ + 1 n ( λ 1 ) ( λ 1 ) n λ + 1 is true for n, then for n + 1 ,

( λ ( n + 1 ) n + 1 ) = ( λ n + λ n + 1 ) = ( λ n + λ ) ( λ n + λ 1 ) ( λ n + 2 ) ( λ n + 1 ) ( λ n + λ n 1 ) ( λ n + λ n 2 ) ( λ n n + 1 ) ( n + 1 ) ( λ n n )

( λ ( n + 1 ) n + 1 ) > ( λ n + λ ) ( λ n + λ 1 ) ( λ n + 2 ) ( λ n + 1 ) ( λ n + λ n 1 ) ( λ n + λ n 2 ) ( λ n n + 1 ) ( n + 1 ) λ λ n λ + 1 n ( λ 1 ) ( λ 1 ) n λ + 1

( λ ( n + 1 ) n + 1 ) > ( λ n + λ ) ( λ n + λ 1 ) ( λ n + 2 ) ( λ n + λ n 1 ) ( λ n + λ n 2 ) ( λ n n + 1 ) λ n + 1 n 1 n + 1 λ λ n λ + 1 ( λ 1 ) ( λ 1 ) n λ + 1

Notice λ n + 1 n > λ , and ( λ n + λ ) ( λ n + λ 1 ) ( λ n + 2 ) ( λ n + λ n 1 ) ( λ n + λ n 2 ) ( λ n n + 1 ) > ( λ λ 1 ) λ 1 because λ n + λ λ n + λ n 1 = λ λ 1 ; λ n + λ 1 λ n + λ n 2 > λ λ 1 ; ; λ n + 2 λ n n + 1 > λ λ 1 . Thus,

( λ ( n + 1 ) n + 1 ) > λ λ 1 ( λ 1 ) λ 1 λ 1 1 n + 1 λ λ n λ + 1 ( λ 1 ) ( λ 1 ) n λ + 1 = λ λ ( n + 1 ) λ + 1 ( n + 1 ) ( λ 1 ) ( λ 1 ) ( n + 1 ) λ + 1 (2.1.7)

From (2.1.6) and (2.1.7), we have for λ 3 and n 2 , ( λ n n ) > λ λ n λ + 1 n ( λ 1 ) ( λ 1 ) n λ + 1

Referring to (1.8), for λ 3 and n 2 , ( λ n n ) Γ λ n p > n { ( λ n ) ! ( ( λ 1 ) n ) ! } 2 2 n 3 ( λ n ) λ n 3 + 2 .

Then, Γ λ n p > n { ( λ n ) ! ( ( λ 1 ) n ) ! } 2 2 n 3 ( λ n ) λ n 3 + 2 > λ λ n λ + 1 n ( λ 1 ) ( λ 1 ) n λ + 1 .

Since when λ 3 and n 2 , then 2 2 n 3 > 0 and ( λ n ) λ n 3 + 2 > 0 .

Γ λ n p > n { ( λ n ) ! ( ( λ 1 ) n ) ! } > λ λ n λ + 1 ( λ n ) λ n 3 + 2 2 2 n 3 n ( λ 1 ) ( λ 1 ) n λ + 1 = 2 λ 2 ( λ 4 ( λ λ 1 ) λ 1 ) n 1 ( λ n ) λ n 3 + 3

Thus, Lemma 1 is proven.

Lemma 2: When n λ 2 9 , f 3 ( n , λ ) = 2 λ 2 ( λ 1 4 e ) n 1 ( λ n ) λ n 3 + 3 is an increasing function with respect to the product of λn and with respect to n. (2.2)

Proof:

Referring to (2.1.2), when λ 3 , ( λ λ 1 ) λ e . From (2.1), when λ 3 and n 2 ,

Γ λ n p > n { ( λ n ) ! ( ( λ 1 ) n ) ! } > f 8 ( n , λ ) = 2 λ 2 ( λ 1 4 ( λ λ 1 ) λ ) n 1 ( λ n ) λ n 3 + 3 , and f 8 ( n , λ ) 2 λ 2 ( λ 1 4 e ) n 1 ( λ n ) λ n 3 + 3 = f 3 ( n , λ ) > 0 .

Thus, Γ λ n p > n { ( λ n ) ! ( ( λ 1 ) n ) ! } > f 8 ( n , λ ) f 3 ( n , λ ) > 0 . (2.2.1)

Let x 2 and y 4 both be real numbers. When x = y 2 ,

f 3 ( x , y ) = 2 ( x + 2 ) 2 ( x + 1 4 e ) x 1 ( ( x + 2 ) x ) x ( x + 2 ) 3 + 3 > f 4 ( x ) = 2 ( x + 2 ) 2 ( x + 1 4 e ) x 1 ( ( x + 2 ) x ) x + 1 3 + 3 > 0 (2.2.2)

f 4 ( x ) = f 4 ( x ) ( 2 x + 2 + ln ( x + 1 4 ) + 4 3 2 x + 1 1 3 ln ( ( x + 2 ) x ) 10 3 x 8 3 ( x + 2 ) ) = f 4 ( x ) f 5 ( x )

where f 5 ( x ) = 2 x + 2 + ln ( x + 1 4 ) + 4 3 2 x + 1 1 3 ln ( ( x + 2 ) x ) 10 3 x 8 3 ( x + 2 ) f 5 ( x ) = 4 x + 6 ( x + 1 ) 2 ( x + 2 ) 2 + x 2 + 2 x 2 3 x ( x + 1 ) ( x + 2 ) + 10 3 x 2 + 8 3 ( x + 2 ) 2 > 0 when x 2 .

Thus, f 5 ( x ) is a strictly increasing function for x 2 .

When x = 9 , f 5 ( x ) = 2 9 + 2 + ln ( 9 + 1 4 ) + 4 3 2 9 + 1 1 3 ln ( 9 ) 1 3 ln ( 9 + 2 ) 10 27 8 33 > 0 . Thus, for x 9 , f 5 ( x ) > 0 . Then, f 4 ( x ) = f 4 ( x ) f 5 ( x ) > 0 .

Thus, f 4 ( x ) is a strictly increasing function for x 9 .

From (2.2.2), when x = y 2 , f 3 ( x , y ) > f 4 ( x ) > 0 . Thus, when x = y 2 9 and x y 99 , then f 3 ( x , y ) is an increasing function respect to the product of xy. (2.2.3)

f 3 ( x , y ) x = f 3 ( x , y ) ( ln ( y 1 4 ) + 1 y 6 x ln ( y x ) y 3 x 3 x ) = f 3 ( x , y ) f 6 ( x , y ) (2.2.4)

where f 6 ( x , y ) = ln ( y 1 4 ) + 1 y 6 x ln ( y x ) y 3 x 3 x

When x = y 2 , then f 6 ( x , y ) = f 7 ( x ) = ln ( x + 1 4 ) + 1 x + 2 6 x ( ln ( x + 2 ) + ln ( x ) + 2 ) 3 x

When x 2 , f 7 ( x ) = 1 x + 1 x + 2 6 x ( 1 x + 2 + 1 x ) + ln ( x + 2 ) + ln ( x ) + 2 6 x x ( x + 2 ) + 3 x 2

f 7 ( x ) = 1 x + 1 x + 2 6 x x + x + 2 x ( x + 2 ) + ln ( x + 2 ) + ln ( x ) + 2 6 x x ( x + 2 ) + 3 x 2 = 1 x + 1 1 3 x x + 1 x x + 2 + 2 6 x x ( x + 2 ) + ln ( x + 2 ) + ln ( x ) 6 x x ( x + 2 ) + 3 x 2 = 1 x + 1 x 3 x x ( x + 2 ) + ln ( x + 2 ) + ln ( x ) 6 x x ( x + 2 ) + 3 x 2 (2.2.5)

When x 2 , then 3 x ( x + 2 ) + ( x + 1 ) > 0

( 3 x ( x + 2 ) + ( x + 1 ) ) ( 3 x ( x + 2 ) ( x + 1 ) ) = ( 3 x ( x + 2 ) ) 2 ( x + 1 ) 2 = 8 x 2 + 16 x 1 > 0

Thus, ( 3 x ( x + 2 ) + ( x + 1 ) ) ( 3 x ( x + 2 ) ( x + 1 ) ) > 0

3 x ( x + 2 ) ( x + 1 ) > 0

3 x ( x + 2 ) > x + 1 then 1 x + 1 > 1 3 x ( x + 2 )

When x 2 , 1 x + 1 1 3 x ( x + 2 ) > 0 , and from (2.2.5), ln ( x + 2 ) + ln ( x ) 6 x x ( x + 2 ) + 3 x 2 > 0 .

Then f 7 ( x ) = ( 1 x + 1 1 3 x ( x + 2 ) ) + ln ( x + 2 ) + ln ( x ) 6 x x ( x + 2 ) + 3 x 2 > 0 .

Thus, when x 2 , f 7 ( x ) is a strictly increasing function.

When x = y 2 2 , since f 6 ( x , y ) = f 7 ( x ) , f 6 ( x , y ) is an increasing function respect to xy.

When x = y 2 = 9 , f 6 ( x , y ) = ln ( 11 1 4 ) + 1 11 6 9 ln ( 99 ) 11 3 9 3 9 > 0 .

When x y 2 2 , f 6 ( x , y ) x = y 12 x x ln ( y ) + y 12 x x ln ( x ) + y 6 x x + y 6 x x + 3 x 2 > 0 .

Thus, when x y 2 9 , f 6 ( x , y ) > 0 , and it is an increasing function with respect to x and to the product of xy, then, from (2.2.4), f 3 ( x , y ) x = f 3 ( x , y ) f 6 ( x , y ) > 0 .

Thus, when x y 2 9 , f 3 ( x , y ) is an increasing function with respect to x. (2.2.6)

Referring to (2.2.3) and (2.2.6), when x y 2 9 , then x y 99 , f 3 ( x , y ) is an increasing function with respect to the product of xy and with respect to x.

Let x = n and y = λ . Then when n λ 2 9 , f 3 ( n , λ ) is an increasing function with respect to the product of λn and with respect to n.

Thus, Lemma 2 is proven.

Lemma 3: When n 24 and 26 λ 3 , f 8 ( n , λ ) = 2 λ 2 ( λ 4 ( λ λ 1 ) λ 1 ) n 1 ( λ n ) λ n 3 + 3 is a strictly increasing function respect to n. (2.3)

Proof:

Referring to (2.1), when λ 3 and n 2 , f 8 ( n , λ ) = 2 λ 2 ( λ 4 ( λ λ 1 ) λ 1 ) n 1 ( λ n ) λ n 3 + 3 > 0

Let a real number x 2 . When λ 3 , then f 8 ( x , λ ) = 2 λ 2 ( λ 4 ( λ λ 1 ) λ 1 ) x 1 ( λ x ) λ x 3 + 3 > 0 (2.3.1)

When λ is an integer constant in the range of 10 λ 3 ,

f 8 ( x , λ ) x = 2 λ 2 x ( ( λ 4 ( λ λ 1 ) λ 1 ) x 1 ) ( ( λ x ) λ x 3 + 3 ) ( λ 4 ( λ λ 1 ) λ 1 ) x 1 x ( ( λ x ) λ x 3 + 3 ) ( ( λ x ) λ x 3 + 3 ) 2

f 8 ( x , λ ) x = f 8 ( x , λ ) ( ln ( λ 4 ) + ln ( λ λ 1 ) λ 1 λ ( ln ( x ) + ln ( λ ) + 2 ) 6 x 3 x ) = f 8 ( x , λ ) f 9 ( x , λ )

where

f 9 ( x , λ ) = ln ( λ 4 ) + ln ( λ λ 1 ) λ 1 λ ( ln ( x ) + ln ( λ ) + 2 ) 6 x 3 x

f 9 ( x , λ ) x = λ ln ( λ ) + λ ln ( x ) 12 x x + 3 x 2 > 0 for x > 1 and λ > 2 ; then, f 9 ( x , λ ) is a strictly increasing function respect to x.

When x = 24 and 10 λ 3 , f 9 ( x , λ ) > 0 . The calculations are below.

When λ = 3 , f 9 ( x , λ ) = ln ( 3 4 ) + ln ( 3 3 1 ) 3 1 3 ( ln ( 24 ) + ln ( 3 ) + 2 ) 6 24 3 24 0.0283 > 0 .

When λ = 4 , f 9 ( x , λ ) = ln ( 4 4 ) + ln ( 4 4 1 ) 4 1 4 ( ln ( 24 ) + ln ( 4 ) + 2 ) 6 24 3 24 0.2814 > 0 .

When λ = 5 , f 9 ( x , λ ) = ln ( 5 4 ) + ln ( 5 5 1 ) 5 1 5 ( ln ( 24 ) + ln ( 5 ) + 2 ) 6 24 3 24 0.4744 > 0 .

When λ = 6 , f 9 ( x , λ ) = ln ( 6 4 ) + ln ( 6 6 1 ) 6 1 6 ( ln ( 24 ) + ln ( 6 ) + 2 ) 6 24 3 24 0.6113 > 0 .

When λ = 7 , f 9 ( x , λ ) = ln ( 7 4 ) + ln ( 7 7 1 ) 7 1 7 ( ln ( 24 ) + ln ( 7 ) + 2 ) 6 24 3 24 0.7183 > 0 .

When λ = 8 , f 9 ( x , λ ) = ln ( 8 4 ) + ln ( 8 8 1 ) 8 1 8 ( ln ( 24 ) + ln ( 8 ) + 2 ) 6 24 3 24 0.8044 > 0 .

When λ = 9 , f 9 ( x , λ ) = ln ( 9 4 ) + ln ( 9 9 1 ) 9 1 9 ( ln ( 24 ) + ln ( 9 ) + 2 ) 6 24 3 24 0.8755 > 0 .

When λ = 10 , f 9 ( x , λ ) = ln ( 10 4 ) + ln ( 10 10 1 ) 10 1 10 ( ln ( 24 ) + ln ( 10 ) + 2 ) 6 24 3 24 0.9347 > 0 .

From (2.3.1), when x 2 and λ 3 , f 8 ( x , λ ) > 0 .

Since f 8 ( x , λ ) x = f 8 ( x , λ ) f 9 ( x , λ ) , when x = 24 and 10 λ 3 , f 8 ( x , λ ) x > 0 .

Thus, when x 24 and 10 λ 3 , f 8 ( x , λ ) is a strictly increasing function respect to x.

Let x = n 24 and 10 λ 3 , f 8 ( n , λ ) is a strictly increasing function respect to n. (2.3.2)

From (2.2.1), when λ 3 and n 2 , f 8 ( n , λ ) f 3 ( n , λ ) > 0 . Referring to (2.2), when λ 11 and n λ 2 , f 3 ( n , λ ) is an increasing function with respect to the product of λn and with respect to n.

When n 24 and 26 λ 11 , since n λ 2 and f 8 ( n , λ ) f 3 ( n , λ ) , f 8 ( n , λ ) is an increasing function with respect to the product of λn and with respect to n. (2.3.3)

From (2.3.2) and (2.3.3), when n 24 and 26 λ 3 , f 8 ( n , λ ) is an increasing function with respect to n.

Thus, Lemma 3 is proven.

Lemma 4: When n n 0 24 and 26 λ 3 , if f 8 ( n , λ ) = 2 λ 2 ( λ 4 ( λ λ 1 ) λ 1 ) n 1 ( λ n ) λ n 3 + 3 > 1 , then there exists at least a prime number p such that ( λ 1 ) n < p λ n . (2.4)

Proof:

Let integers m n n 0 24 .

From (2.3), when n n 0 24 and 26 λ 3 , f 8 ( n 0 , λ ) is an increasing function respect to n.

When 26 λ 3 , if f 8 ( n 0 , λ ) > 1 , then f 8 ( n , λ ) > 1 , and thus, f 8 ( m , λ ) > 1 ; then from (2.1), Γ λ n p > n { ( λ n ) ! ( ( λ 1 ) n ) ! } > f 8 ( n , λ ) > 1 , and Γ λ m p > m { ( λ m ) ! ( ( λ 1 ) m ) ! } > f 8 ( m , λ ) > 1 . (2.4.1)

Note that m n n 0 24 λ 2 since 26 λ 3 .

From (1.7), when n λ 2 , every prime number in Γ λ n p > n { ( λ n ) ! ( ( λ 1 ) n ) ! } has a power of 0 or 1; when m λ 2 , every prime number in Γ λ m p > m { ( λ m ) ! ( ( λ 1 ) m ) ! } has a power of 0 or 1. (2.4.2)

Γ λ m p > m { ( λ m ) ! ( ( λ 1 ) m ) ! } = Γ λ m p > ( λ 1 ) m { ( λ m ) ! ( ( λ 1 ) m ) ! } i = 1 i = λ 2 ( Γ ( λ 1 ) m i p > λ m i + 1 { ( λ m ) ! ( ( λ 1 ) m ) ! } Γ λ m i + 1 p > ( λ 1 ) m i + 1 { ( λ m ) ! ( ( λ 1 ) m ) ! } )

In i = 1 i = λ 2 ( Γ ( λ 1 ) m i p > λ m i + 1 { ( λ m ) ! ( ( λ 1 ) m ) ! } ) , for every distinct prime number p in these ranges, the numerator ( λ m ) ! has the product of p 2 p 3 p i p = i ! p i . The denominator ( ( λ 1 ) m ) ! also has the same product of i ! p i . Thus, they cancel each other in ( λ m ) ! ( ( λ 1 ) m ) ! .

Referring to (1.2), i = 1 i = λ 2 ( Γ ( λ 1 ) m i p > λ m i + 1 { ( λ m ) ! ( ( λ 1 ) m ) ! } ) = 1 .

Thus,

Γ λ m p > m { ( λ m ) ! ( ( λ 1 ) m ) ! } = Γ λ m p > ( λ 1 ) m { ( λ m ) ! ( ( λ 1 ) m ) ! } i = 1 i = λ 2 ( Γ λ m i + 1 p > ( λ 1 ) m i + 1 { ( λ m ) ! ( ( λ 1 ) m ) ! } )

Γ λ m p > m { ( λ m ) ! ( ( λ 1 ) m ) ! } = i = 1 i = λ 1 ( Γ λ m i p > ( λ 1 ) m i { ( λ m ) ! ( ( λ 1 ) m ) ! } ) . (2.4.3)

i = 1 i = λ 1 ( Γ λ m i p > ( λ 1 ) m i { ( λ m ) ! ( ( λ 1 ) m ) ! } ) is the product of (λ − 1) sectors from i = 1 to i = λ 1 .

Each of these sectors is the prime number factorization of the product of the consecutive integers between ( λ 1 ) m i and λ m i .

Referring to (2.4.3), when Γ λ m p > m { ( λ m ) ! ( ( λ 1 ) m ) ! } > 1 , then i = 1 i = λ 1 ( Γ λ m i p > ( λ 1 ) m i { ( λ m ) ! ( ( λ 1 ) m ) ! } ) > 1 .

Referring to (1.1), Γ λ m i p > ( λ 1 ) m i { ( λ m ) ! ( ( λ 1 ) m ) ! } 1 . Thus, when Γ λ m p > m { ( λ m ) ! ( ( λ 1 ) m ) ! } > 1 , at least one of the sectors is greater than one in i = 1 i = λ 1 ( Γ λ m i p > ( λ 1 ) m i { ( λ m ) ! ( ( λ 1 ) m ) ! } ) .

Let Γ λ m i p > ( λ 1 ) m i { ( λ m ) ! ( ( λ 1 ) m ) ! } > 1 be such a sector and let m = n i where λ 1 i 1 from (2.4.3). Thus, when m = n i n λ 2 ,

Γ λ n i i p > ( λ 1 ) n i i { ( λ n i ) ! ( ( λ 1 ) n i ) ! } = Γ λ n p > ( λ 1 ) n { ( λ n i ) ! ( ( λ 1 ) n i ) ! } > 1 . (2.4.4)

( λ n i ) ! ( ( λ 1 ) n i ) ! = ( λ n i ) ( λ n i 1 ) ( λ n i i ) ( λ n i 2 i ) ( λ n i ( n 1 ) i ) ( λ n i n i + 1 ) ( ( λ 1 ) n i ) ! ( ( λ 1 ) n i ) !

( λ n i ) ! ( ( λ 1 ) n i ) ! = i ( λ n ) ( λ n i 1 ) i ( λ n 1 ) i ( λ n 2 ) i ( λ n n + 1 ) ( λ n i n i + 1 ) ( ( λ 1 ) n i ) ! ( ( λ 1 ) n i ) !

Thus, ( λ n i ) ! ( ( λ 1 ) n i ) ! contains all the factors of λ n , λ n 1 , λ n 2 , , λ n n + 1 in ( λ n ) ! ( ( λ 1 ) n ) ! .

These factors make up all the consecutive integers in the range of λ n p > ( λ 1 ) n in ( λ n ) ! ( ( λ 1 ) n ) ! . Thus, ( λ n i ) ! ( ( λ 1 ) n i ) ! contains ( λ n ) ! ( ( λ 1 ) n ) ! .

Referring to the definition, all prime numbers in ( λ n i ) ! ( ( λ 1 ) n i ) ! in the ranges of λ n i p > λ n and ( λ 1 ) n > p do not contribute to Γ λ n p > ( λ 1 ) n { ( λ n i ) ! ( ( λ 1 ) n i ) ! } , nor does i for λ 1 i 1 . Only the prime numbers in the prime factorization of ( λ n i ) ! ( ( λ 1 ) n i ) ! in the range of λ n p > ( λ 1 ) n present in Γ λ n p > ( λ 1 ) n { ( λ n i ) ! ( ( λ 1 ) n i ) ! } . Since ( λ n ) ! ( ( λ 1 ) n ) ! is the product of all the consecutive integers in this range, Γ λ n p > ( λ 1 ) n { ( λ n i ) ! ( ( λ 1 ) n i ) ! } = Γ λ n p > ( λ 1 ) n { ( λ n ) ! ( ( λ 1 ) n ) ! } .

Referring to (2.4.4), Γ λ n p > ( λ 1 ) n { ( λ n i ) ! ( ( λ 1 ) n i ) ! } = Γ λ n p > ( λ 1 ) n { ( λ n ) ! ( ( λ 1 ) n ) ! } > 1 . (2.4.5)

Referring to (2.4.1), (2.4.3), (2.4.4), and (2.4.5), when 26 λ 3 and n n 0 24 ,

if f 8 ( n , λ ) > 1 , then f 8 ( m , λ ) > 1 and Γ λ m p > m { ( λ m ) ! ( ( λ 1 ) m ) ! } > 1 ;

when Γ λ m p > m { ( λ m ) ! ( ( λ 1 ) m ) ! } > 1 , then Γ λ n p > ( λ 1 ) n { ( λ n ) ! ( ( λ 1 ) n ) ! } > 1 .

Thus, when 26 λ 3 and n n 0 24 , if f 8 ( n , λ ) > 1 , then Γ λ n p > ( λ 1 ) n { ( λ n ) ! ( ( λ 1 ) n ) ! } > 1 , referring to (1.3), there exists at least a prime number p such that ( λ 1 ) n < p λ n .

Thus, Lemma 4 is proven.

Lemma 5: When n λ 2 25 , there exists at least a prime number p such

that ( λ 1 ) n < p λ n . (2.5)

Proof:

Referring to (2.2), when n λ 2 9 , f 3 ( n , λ ) = 2 λ 2 ( λ 1 4 e ) n 1 ( λ n ) λ n 3 + 3 is an increasing function with respect to the product of λn and with respect to n.

Let integers n 1 = 25 , and λ 1 = 27 . Then f 3 ( n 1 , λ 1 ) = 2 27 2 ( 27 1 4 e ) 25 1 ( 25 27 ) 675 3 + 3 1.2495 E + 33 9.7843 E + 32 > 1 .

When m = n = n 1 = λ 2 = λ 1 2 = 25 , f 3 ( m , λ ) = f 3 ( n , λ ) = f 3 ( n 1 , λ 1 ) > 1 .

From (2.2), when m = n = λ 2 25 , f 3 ( n , λ ) > 1 and f 3 ( m , λ ) > 1 since f 3 ( n , λ ) is an increasing function with respect to the product of λn. When m n λ 2 25 , then f 3 ( n , λ ) > 1 and f 3 ( m , λ ) > 1 since f 3 ( n , λ ) is also an increasing function with respect to n.

Referring to (2.2.1), when m n λ 2 25 , Γ λ n p > n { ( λ n ) ! ( ( λ 1 ) n ) ! } > f 3 ( n , λ ) f 3 ( n 1 , λ 1 ) > 1 ; and Γ λ m p > m { ( λ m ) ! ( ( λ 1 ) m ) ! } > f 3 ( m , λ ) f 3 ( n , λ ) > 1 . (2.5.1)

Referring to (2.4.2), when m n λ 2 25 , every prime number in Γ λ n p > n { ( λ n ) ! ( ( λ 1 ) n ) ! } and in Γ λ m p > m { ( λ m ) ! ( ( λ 1 ) m ) ! } has a power of 0 or 1. (2.5.2)

Referring to (2.5.1), (2.4.3), (2.4.4), and (2.4.5), when m n λ 2 25 , Γ λ n p > n { ( λ n ) ! ( ( λ 1 ) n ) ! } > 1 , and Γ λ m p > m { ( λ m ) ! ( ( λ 1 ) m ) ! } > 1 , then Γ λ n p > ( λ 1 ) n { ( λ n ) ! ( ( λ 1 ) n ) ! } > 1 ; referring to (1.3), there exists at least a prime number p such that ( λ 1 ) n < p λ n .

Thus, Lemma 5 is proven. It was proven in [ [5] , pp 1324-1329] with more details.

3. A Prime Number between (λ − 1)n and λn When 26 ≥ λ ≥ 3 and nλ − 2

Proposition 1: For λ = 3 , when n λ 2 , there exists at least a prime number p such

that ( λ 1 ) n < p λ n . (3.1)

Proof:

Referring to (2.3) for λ = 3 , when n n 0 24 , f 8 ( n 0 , λ ) is a strictly increasing function on n 0 .

Let n 0 = 83 . When λ = 3 and n n 0 = 83 ,

f 8 ( n 0 , λ ) = 2 λ 2 ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 = 18 1.6875 83 1 249 249 3 + 3 7.7493 E + 19 6.2000 E + 19 > 1 .

Thus, for λ = 3 , when n 83 , n > λ 2 and f 8 ( n , λ ) f 8 ( n 0 , λ ) > 1 ; then, referring to (2.4), there exists at least a prime number p such that ( λ 1 ) n < p λ n .

For λ = 3 , when 82 n 1 = λ 2 , Table 1 shows that there exists a prime number p such that ( λ 1 ) n < p λ n .

Thus, (3.1) is proven.

Proposition 2: For 5 λ 4 , when n λ 2 , there exists at least a prime number p such that

( λ 1 ) n < p λ n . (3.2)

Table 1. For 82 n 1 and λ = 3 , there is a prime number p such that 2 n < p 3 n .

Proof:

From (2.3), for 5 λ 4 , when n n 0 24 , f 8 ( n 0 , λ ) is a strictly increasing function on n 0 .

Let n 0 = 40 . When n n 0 = 40 and 5 λ 4 , f 8 ( n , λ ) f 8 ( n 0 , λ ) > 1 . The calculations are below.

When λ = 4 , f 8 ( n 0 , λ ) = 2 λ 2 ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 32 2.3703 40 1 160 160 3 + 3 1.3258 E + 16 8.0503 E + 15 > 1 .

When λ = 5 , f 8 ( n 0 , λ ) = 2 λ 2 ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 50 3.0518 40 1 200 200 3 + 3 7.8968 E + 18 5.6253 E + 17 > 1 .

Thus, for 5 λ 4 , when n 40 , n > λ 2 and f 8 ( n , λ ) > f 8 ( n 0 , λ ) > 1 ; then, referring to (2.4), there exists at least a prime number p such that ( λ 1 ) n < p λ n .

For 5 λ 4 , when 39 n λ 2 , Table 2 shows that there exists a prime number p such that ( λ 1 ) n < p λ n .

Thus, (3.2) is proven.

Proposition 3: For 11 λ 6 , when n λ 2 , there exists at least a prime number p such that

( λ 1 ) n < p λ n . (3.3)

Proof:

Referring to (2.3), for 11 λ 6 , when n n 0 24 , f 8 ( n 0 , λ ) is a strictly increasing function with respect to n 0 .

Let n 0 = 28 . When n n 0 = 28 and 11 λ 6 , f 8 ( n , λ ) f 8 ( n 0 , λ ) > 1 .

Table 2. For 5 λ 4 and 39 n λ 2 , there is a prime number p such that ( λ 1 ) n < p λ n

The calculations are below.

When λ = 6 , f 8 ( n 0 , λ ) = 2 λ 2 ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 72 3.7325 28 1 168 168 3 + 3 2.0014 E + 17 1.9515 E + 16 > 1 .

When λ = 7 , f 8 ( n 0 , λ ) = 2 λ 2 ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 98 4.4128 28 1 196 196 3 + 3 2.5033 E + 19 3.7501 E + 17 > 1 .

When λ = 8 , f 8 ( n 0 , λ ) = 2 λ 2 ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 128 5.0930 28 1 224 224 3 + 3 1.5686 E + 21 5.9689 E + 18 > 1 .

When λ = 9 , f 8 ( n 0 , λ ) = 2 λ 2 ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 162 5.7730 28 1 252 252 3 + 3 5.8527 E + 22 8.1510 E + 19 > 1 .

When λ = 10 , f 8 ( n 0 , λ ) = 2 λ 2 ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 200 6.4529 28 1 280 280 3 + 3 1.4602 E + 24 9.7946 E + 20 > 1 .

When λ = 11 , f 8 ( n 0 , λ ) = 2 λ 2 ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 242 7.1328 28 1 308 308 3 + 3 2.6414 E + 25 1.0560 E + 22 > 1 .

Thus, for 11 λ 6 , when n 28 , n > λ 2 and f 8 ( n , λ ) f 8 ( n 0 , λ ) > 1 ; then, referring to (2.4), there exists at least a prime number p such that ( λ 1 ) n < p λ n .

For 11 λ 6 , when 27 n λ 2 , Table 3 shows that there exists a prime number p such that ( λ 1 ) n < p λ n .

Thus, (3.3) is proven.

Proposition 4: For 26 λ 12 , when n λ 2 , there exists at least a prime number p such that

( λ 1 ) n < p λ n . (3.4)

Proof:

Referring to (2.3) for 26 λ 12 , when n n 0 24 , f 8 ( n 0 , λ ) is a strictly increasing function with respect to n 0 . Let n 0 = 25 . When n n 0 = 25 and λ = 12 , then f 8 ( n , λ ) f 8 ( n 0 , λ ) and

f 8 ( n 0 , λ ) = 2 λ 2 ( ( λ 4 ) ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 288 7.8126 25 1 300 300 3 + 3 7.7000 E + 23 5.4078 E + 21 > 1 .

For n n 0 = 25 and 26 λ 13 , then f 8 ( n , λ ) f 8 ( n 0 , λ ) . It can be seen from Table 4 that the values of f 8 ( n 0 , λ ) as well as f 8 ( n , λ ) are all greater than 1.

(Detailed calculations are in Appendix.)

Thus, for 26 λ 12 , when n 25 > λ 2 , f 8 ( n , λ ) f 8 ( n 0 , λ ) > 1 ; then, referring to (2.4), there exists at least a prime number p such that ( λ 1 ) n < p λ n .

For 13 λ 12 and 24 n λ 2 , Table 5 shows that there exists a prime number p such that ( λ 1 ) n < p λ n .

For 26 λ 14 and 24 n λ 2 , Table 6 shows that there exists a prime number p such that ( λ 1 ) n < p λ n .

Thus, (3.4) is proven.

Combining (3.1), (3.2), (3.3), and (3.4), when 26 λ 3 and n λ 2 , there exists at least a prime number p such that ( λ 1 ) n < p λ n . (3.5)

4. A Prime Number between kn and (k + 1)n When nk − 1

Proposition 5: For two positive integers n and k, when n k 1 , there exists at least a prime number p such that k n < p ( k + 1 ) n . (4.1)

Table 3. For 11 λ 6 and 27 n λ 2 , there is a prime number p such that ( λ 1 ) n < p λ n .

Table 4. When n n 0 = 25 and 26 λ 13 , then f 8 ( n , λ ) f 8 ( n 0 , λ ) > 1 .

Table 5. For 13 λ 12 and 24 n λ 2 , there is a prime number p such that ( λ 1 ) n < p λ n .

Table 6. For 26 λ 14 and 24 n λ 2 , there is a prime number p such that ( λ 1 ) n < p λ n .

Proof:

Referring to (2.5), when n λ 2 25 , there exists at least a prime number p such that ( λ 1 ) n < p λ n . This statement is the same as that when λ 27 and n λ 2 , there exists at least a prime number p such that ( λ 1 ) n < p λ n .

Referring to (3.5), when 26 λ 3 and n λ 2 , there exists at least a prime number p such that ( λ 1 ) n < p λ n .

Thus, when λ 3 and n λ 2 , there is at least a prime number p such that ( λ 1 ) n < p λ n .

Let integer k = λ 1 , then for n 1 and k 2 , when n k 1 , there exists at least a prime number p such that k n < p ( k + 1 ) n . (4.2)

The Bertrand-Chebyshev’s theorem points out that for n 1 and k = 1 , there exists at least a prime number p such that k n < p ( k + 1 ) n . (4.3)

From (4.2) and (4.3), we can conclude that for n 1 and k 1 , when n k 1 , there exists at least a prime number p such that k n < p ( k + 1 ) n . Thus, Proposition 5 becomes a theorem, Theorem 4.1, and Bertrand-Chebyshev’s theorem is a special case of this theorem.

In the field of prime number distribution, an important theorem is the prime number theorem, π ( N ) ~ N ln ( N ) , where π ( N ) is the number of distinct

prime numbers less than or equal to a natural number N. The prime number theorem provides the approximate number of prime numbers relative to the natural numbers, while Theorem 4.1 shows that when n k 1 , the prime number exists in the interval between kn and (k + 1)n, that is, Theorem 4.1 provides the approximate locations of prime numbers among natural numbers. Using this theorem, Legendre’s conjecture [7] and several other conjectures can be easily proven. The method of proving Theorem 4.1 can also help to study and solve some difficult problems in number theory such as the other three Landau problems [8] .

Appendix

Calculation of f 8 ( n 0 , λ ) when n 0 = 25 and 26 λ 13 .

When λ = 13 , f 8 ( n 0 , λ ) = 2 λ ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 338 8.4924 25 1 325 325 3 + 3 6.6934 E + 24 4.2676 E + 22 156 > 1 .

When λ = 14 , f 8 ( n 0 , λ ) = 2 λ ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 392 9.1721 25 1 350 350 3 + 3 4.9265 E + 25 3.1424 E + 23 157 > 1 .

When λ = 15 , f 8 ( n 0 , λ ) = 2 λ ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 450 9.8518 25 1 375 375 3 + 3 3.1448 E + 26 2.1746 E + 24 145 > 1 .

When λ = 16 , f 8 ( n 0 , λ ) = 2 λ ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 512 10.5315 25 1 400 400 3 + 3 1.7743 E + 27 1.4234 E + 25 125 > 1 .

When λ = 17 , f 8 ( n 0 , λ ) = 2 λ ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 578 11.2112 25 1 425 425 3 + 3 8.9862 E + 27 8.8497 E + 25 102 > 1 .

When λ = 18 , f 8 ( n 0 , λ ) = 2 λ ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 648 ( 11.8909 ) 25 1 450 450 3 + 3 4.1374 E + 28 5.2574 E + 26 78.7 > 1 .

When λ = 19 , f 8 ( n 0 , λ ) = 2 λ ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 722 12.5705 25 1 475 475 3 + 3 1.7498 E + 29 2.9904 E + 27 58.5 > 1 .

When λ = 20 , f 8 ( n 0 , λ ) = 2 λ ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 800 13.2502 25 1 500 500 3 + 3 6.8616 E + 29 1.6366 E + 27 41.9 > 1 .

When λ = 21 , f 8 ( n 0 , λ ) = 2 λ ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 882 13.9298 25 1 525 525 3 + 3 2.5127 E + 30 8.6291 E + 28 29.1 > 1 .

When λ = 22 , f 8 ( n 0 , λ ) = 2 λ ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 968 14.6094 25 1 550 550 3 + 3 8.6507 E + 30 4.4015 E + 29 19.7 > 1 .

When λ = 23 , f 8 ( n 0 , λ ) = 2 λ ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 1058 15.2891 25 1 575 575 3 + 3 2.8161 E + 31 2.1742 E + 30 13.0 > 1 .

When λ = 24 , f 8 ( n 0 , λ ) = 2 λ ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 1152 15.9687 25 1 600 600 3 + 3 8.7081 E + 31 1.0425 E + 31 8.35 > 1 .

When λ = 25 , f 8 ( n 0 , λ ) = 2 λ ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 1250 16.6483 25 1 625 625 3 + 3 2.5691 E + 32 4.8599 E + 31 5.29 > 1 .

When λ = 26 , f 8 ( n 0 , λ ) = 2 λ ( λ 4 ( λ λ 1 ) λ 1 ) n 0 1 ( λ n 0 ) λ n 0 3 + 3 1352 17.3279 25 1 650 650 3 + 3 7.2594 E + 32 2.2080 E + 32 3.29 > 1 .

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Aigner, M. and Ziegler, G. (2014) Proofs from THE BOOK. 5th Edition, Springer, Berlin.
https://doi.org/10.1007/978-3-662-44205-0
[2] El Bachraoui, M. (2006) Prime in the Interval [2n, 3n]. International Journal of Contemporary Mathematical Sciences, 1, 617-621.
https://doi.org/10.12988/ijcms.2006.06065
[3] Loo, A. (2011) On the Prime in the Interval [3n, 4n].
https://arxiv.org/abs/1110.2377
[4] Shevelev, V., Greathouse IV, C. and Moses, P. (2013) On Intervals (kn, (kn + 1)n) Containing a Prime for All n > 1. Journal of Integer Sequences, 16, Article 13.7.3.
[5] Yu, W. (2023) The Proofs of Legendre’s Conjecture and Three Related Conjectures. Journal of Applied Mathematics and Physics, 11, 1319-1336.
https://doi.org/10.4236/jamp.2023.115085
[6] Wikipedia. Proof of Bertrand’s Postulate.
https://en.wikipedia.org/wiki/Proof_of_Bertrand%27s_postulate
[7] Wikipedia. Legendre’s Conjecture.
https://en.wikipedia.org/wiki/Legendre%27s_conjecture
[8] Wikipedia. Landau’s problems.
https://en.wikipedia.org/wiki/Landau%27s_problems

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.