Effect of Camphor Sulfonic Acid Doping on Structural, Morphological, Optical and Electrical Transport Properties on Polyaniline-ZnO Nanocomposites

Abstract

In the present work, we report on effect of camphor sulfonic acid (CSA) doping on polyaniline-ZnO (50%) nanocomposites prepared by spin coating method on glass substrates. The XRD analysis revealed that the addition of CSA has no effect on crystallinity of PANi-ZnO nanocomposites. Surface morphological studies (SEM) showed that CSA has a strong effect on morphology of PANi-ZnO. The FTIR & UV-Vis spectroscopy confirmed the interaction between CSA and PANi-ZnO nanocomposite. DC electrical conductivity studies showed an increase in conductivity of PANi-ZnO nanocomposites by one order due to addition of CSA (10% - 50%).

Share and Cite:

Patil, S. , Chougule, M. , Pawar, S. , Sen, S. and Patil, V. (2012) Effect of Camphor Sulfonic Acid Doping on Structural, Morphological, Optical and Electrical Transport Properties on Polyaniline-ZnO Nanocomposites. Soft Nanoscience Letters, 2, 46-53. doi: 10.4236/snl.2012.23009.

1. Introduction

Semiconducting zinc oxide (ZnO) is attracting lot of attention due to its unique properties such as direct wide band gap (3.37 eV) and large exciton binding energy (60 meV) at room temperature [1]. Due to these properties it has been studied extensively for making optical and electronic devices [1-3] like: light emitting diodes, solar cells, transducers, varistors, photodetetors, etc. Nanostructured ZnO can be synthesized by various methods such as physical, chemical, electrochemical, etc. but chemical route has attracted much attention due to the flexibility of controlling the shape and size of the structures by tuning the different growth conditions [4-10].

In recent years, the development of inorganic/polymer hybrid materials on nanometer scale have been receiving significant attention due to a wide range of potential applications in optoelectronic devices [11-13] and in field effect transistors [14]. The inorganic fillers at nanoscale exhibit high surface to volume ratio and thus expected to modify drastically the electrical, optical and dielectric properties of polymer. In general, the synthesis of hybrid of polymer/inorganic material has the goal of obtaining a new composite material having synergetic or complementary behaviors between the polymer and inorganic material. Polyaniline (PANi) is a most studied polymer because of its relative ease in preparation, good environmental stability [15,16] and tunable conductivity. Several reports on the synthesis of composite of nanofillers like: TiO2, CdS, Na+-montmorillonite, Pd and Au with PANi have been demonstrated [17-21]. These synthesis processes have been carried out either in the aqueous solutions or via a sol-gel method, including the initial dispersion of the nanoparticles in the solution and the succedent oxidative polymerization of aniline with ammonium peroxidisulphate (APS). Since the conducting polyaniline and inorganic semiconducting material ZnO in nanoform both are having a wide range of technological applications, we got motivated to make composite of PANi and ZnO and believed to get novel properties resulting from the molecular level interaction of these two dissimilar chemical components [22,23].

In most of these cases, the nanocomposites were further used in various applications in their thin-film form. Although these PANi-ZnO nanocomposites are also conducting since they are polyaniline emeraldine chloride, their processability is still poor to limit their commercial uses although their conductivity could be measured by sandwiching the pellets. PANi doped with organic acids such as CSA, DBSA, PVSA etc. which possesses sufficiently strong Bronsted acid centers capable of polyaniline protonation together with suitable functional groups which, when introduced to the polymer matrix upon doping, induce the solubilization of its stiff conjugated backbone, is readily soluble, chemically stable, and electrically conductive [24-27].

There are few reports on the synthesis, morphological, electrical and optical studies [28,29] of PANi/ZnO composite. However to the best of our knowledge no study has been reported on effect of organic (ionic) acid doping on PANi/ZnO nanocomposite.

In this paper for the first time, we report systematic investigation on the effect of camphor sulfonic acid (CSA) doping on structural, morphological optical and electrical properties of PANi-ZnO nanocomposite. Much effort has been put into the investigation of the interaction between CSA and PANi-ZnO in order to gain a better understanding of the doping effect of CSA. The structural, morphological, optical and electrical properties of CSA doped PANi-ZnO nanocomposite were investigated using XRD, FTIR, SEM, UV-Vis spectroscopy and four probe technique.

2. Experimental Techniques

2.1. Synthesis of PANi-ZnO Nanocomposite

The undoped polyaniline powder was dissolved in mcresol. The solution was stirred for 11 hr and filtered with a Whatman filter paper having pores of size of few microns. The solution of filtered undoped PANi was poured in a Petri dish and dried at 60˚C [30]. The ZnO nanoparticles were prepared by sol gel method [31]. The ZnO nanocomposite with undoped PANi was prepared by adding 50 wt% ZnO nanoparticles in filtered solution of undoped PANi in m-cresol and stirring it for 11 hr. Films of the nanocomposite were prepared on glass substrate by spin coating method at 3000 rpm for 40 s [32].

2.2. Synthesis of CSA Doped PANi-ZnO Nanocomposite

The CSA doped PANi-ZnO nanocomposites were prepared by adding 10 - 50 wt% of camphor sulfonic acid (CSA) into PANi-ZnO nanocomposite powder and grinding it in a smooth agate and mortar for 1 hr for solid state doping. Thin films of the CSA doped PANi-ZnO (50%) nanocomposite were prepared on glass substrate by spin coating technique at 3000 rpm for 40 s and dried on hot plate at 100˚C for 10 min.

Figure 1 shows the flow diagram of preparation of CSA doped PANi-ZnO nanocomposite.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H. Choi, “Controlled Growth of Zinc Oxide Nanowires and Their Optical Properties,” Advanced Function Materials, Vol. 12, No. 5, 2002, pp. 323-331. doi:10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
[2] W. I. Park, G. Yi, M. Kim and S. L. Pennycock, “ZnO Nanoneedles Non-Catalytic Vapor-Phase Epitaxy,” Advanced Materials, Vol. 14, No. 24, 2002, pp. 1841-1843. doi:10.1002/adma.200290015
[3] L. Vayssieres, K. Keis, A. Hagfeldt and S. Lindquist, “Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes,” Chemistry of Materials, Vol. 13, No. 12, 2001, pp. 4395-4398. doi:10.1021/cm011160s
[4] C. Pacholski, A. Kornowski and H. Weller, “Selbstorganisation von ZnO: Von Nanopartikeln zu Nanost?bchen,” Angewandte Chemie, Vol. 114, No. 7, 2002, pp. 1234-1237. doi:10.1002/1521-3757(20020402)114:7<1234::AID-ANGE1234>3.0.CO;2-D
[5] V. B. Patil, S. G. Pawar, S. L. Patil and S. B. Krupanidhi,, “ZnO Nanocrystalline Thin Films: A Correlation of Microstructural, Optoelectronic Properties,” Journal of Materials Science: Materials Electronics, Vol. 41, No. 4, 2010, pp. 355-359. doi:10.1007/s10854-009-9920-5
[6] J. H. Lee, K. H. Ko and B. O. Park, “Electrical and Optical Properties of ZnO Transparent Conducting Films by the Sol-Gel Method,” Journal of Crystal Growth, Vol. 247, No. 1, 2003, pp. 119-125. doi:10.1016/S0022-0248(02)01907-3
[7] M. A. Chougule, S. L. Patil, S. G. Pawar, B. T. Raut, P. R. Godse, S. Sen and V. B. Patil, “Fabrication of Nanostructured ZnO Thin Film Sensor for NO2 Monitoring,” Ceramic International, Vol. 28, 2012, pp. 2685-2692. doi:10.1016/j.ceramint.2011.11.036
[8] V. Gupta and A. Mansingh, “Influence of Post-Deposition Annealing on the Structural and Optical Properties of Sputtered Zinc Oxide Film,” Journal of Applied Physics, Vol. 80, 1996, pp. 1063-1073. doi:10.1063/1.362842
[9] S. L. Patil, S. G. Pawar, A. T. Mane, M. A. Chougule and V. B. Patil, “Nanocrystalline ZnO Thin Films: Optoelectronic and Gas Sensing Properties,” Journal of Materials Science: Materials in Electronics, Vol. 21, No. 12, 2010, pp. 1332-1336. doi:10.1007/s10854-010-0071-5
[10] L. Vayssieres, K. Keis, A. Hagfeldt and S. Lindquist, “Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes,” Chemistry of Materials, Vol. 13, No. 12, 2001, pp. 4395-4398. doi:10.1021/cm011160s
[11] S. L. Patil, S. G. Pawar, M. A. Chougule, B. T. Raut, P. R. Godse, S. Sen and V. B. Patil, “Structural, Morphological, Optical & Electrical Properties of PANi-ZnO Nanocomposites,” International Journal of Polymeric Materials, in press. doi:10.1080/00914037.2011.610051
[12] B. W. J. E. Beek, L. H. Slooff, M. N. Wienk, J. M. Kroon and R. A. J. Janseen, “Hybrid Solar Cells Using a Zinc Oxide Precursor and a Conjugated Polymer,” Advanced Functional Materials, Vol. 15, No. 10, 2005, pp. 1703- 1709. doi:10.1002/adfm.200500201
[13] X. M. Sui, C. L. Shao and Y. C. Liu, “Photoluminescence Properties of Highly Dispersed ZnO Quantum Dots in Polyvinyl Pyrrolidone Nanotubes Prepared by a Single Capillary Electrospinning,” Applied Physics Letters, Vol. 87, 2005, pp. 113-118.
[14] D. C. Olson, J. Piris, R. T. Colins, S. E. Shaheen and D. S. Ginley, “Hybrid Photovoltaic Devices of Polymer and ZnO Nanofiber Composites,” Thin Solid Films, Vol. 496, No. 1, 2006, pp. 26-29. doi:10.1016/j.tsf.2005.08.179
[15] Z. X. Xu, V. A. L. Roy, P. Stallinga, M. Muccini, S. Toffanin, H. F. Xiang and C. M. Che, “High Efficiency Phosphorescent Organic Light-Emitting Diodes Using Carba- zole-Type Triplet Exciton Blocking Layer,” Applied Physics Letters, Vol. 90, No. 22, 2007, pp. 223505-223509. doi:10.1063/1.2742788
[16] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A. Heeger, “Flexible Light-Emitting Diodes Made from Soluble Conducting Polymers,” Nature, Vol. 357, No. 6378, 1992, pp. 477-479. doi:10.1038/357477a0
[17] M. J. Sailor, E. J. Ginsburg, C. B. Gorman, A. Kumar, R. H. Grubbs and N. S. Lewis, “Thin Films of n-Si/Poly- (CH3)3Si-Cyclooctatetraene: Conducting-Polymer Solar Cells and Layered Structures,” Science, Vol. 249, No. 4973, 1990, pp. 1146-1149. doi:10.1126/science.249.4973.1146
[18] X. He and W. Qi, “Ultrasonic irradiation: A Novel Approach to Prepare Conductive Polyaninine/Nanocrystal- line TiO2 Composites,” Chemistry of Materials, Vol. 14, 2002, pp. 2158-2165. doi:10.1021/cm0109591
[19] C. Danielle, S. Michelle, A. Ivo and Z. Aldo,” Preparation and Characterization of Novel Hybrid Materials Formed from (Ti, Sn)O2 Nanoparticles and Polyaniline,” Chemistry of Materials, Vol. 15, 2003, pp. 4658-4665. doi:10.1021/cm034292p
[20] J. Park, S. Park, A. Koukitu, O. Hatozaki and N. Oyarna, “Electrochemical and Chemical Interactions between Polyaniline and Palladium Nanoparticles,” Synthetic Metals, Vol. 141, No. 3, 2004, pp. 265-269. doi:10.1016/S0379-6779(03)00410-7
[21] R. Chandrakanthi and M. Careem, “Preparation and Characterization of CdS and Cu2S Nanoparticle/Polyani-Line Composite Films,” Thin Solid Films, Vol. 417, No. 1-2, 2002, pp. 51-56. doi:10.1016/S0040-6090(02)00600-4
[22] S. Pethkar, R. Patil, J. Kher and K. Vijayarnohanan, “Deposition and Characterization of CdS Nanoparticle/ Polyaniline Composite Films,” Thin Solid Films, Vol. 349, No. 1-2, 1999, pp. 105-109. doi:10.1016/S0040-6090(99)00222-9
[23] M. Matsumura and T. Ohno, “Concerted Transport of Electrons and Protons across Conducting Polymer Membranes,” Advanced Materials, Vol. 9, No. 4, 1997, pp. 357-359. doi:10.1002/adma.19970090416
[24] H. Yoneyama, N. Takahashi and S. Kuwabata, “Catalytic Asymmetric Reaction of Lithium Ester Enolates with Imines,” Journal of the Chemical Society, Chemical Communications, Vol. 2, No. 8, 1999, pp. 716-719.
[25] T. A. Skotheim, R. Elsenbaumer and J. Reynolds, Eds., “Handbook of Conducting Polymers,” Marcel Dekker, New York, 1998.
[26] B. T. Raut, P. R. Godse, S. G. Pawar, M. A. Chougule, S. Sen, R. C. Pawar, C. S. Lee and V. B. Patil, “Novel Method of Fabrication of Polyaniline-CdS Nanocomposites: Structural, Morphological and Optoelectronic Properties,” Ceramic International, Vol. 38, No. 5, 2012, pp. 3999-4007. doi:10.1016/j.ceramint.2012.01.056
[27] J. Stejkal, I. Spurina, M. Trchova, J. Prokes, J. Krivka and E. Tobolkova, “Solid State Protonation and Electrical Conductivity of Polyaniline,” Macromolecules, Vol. 31, No. 7, 1998, pp. 2218-2222. doi:10.1021/ma970823h
[28] S. L. Patil, M. A. Chougule, S. G. Pawar, S. Sen and V. B. Patil, “Development of Polyaniline-ZnO Nanocomposite Gas Sensor,” Sensors and Transducers, Vol. 134, No. 11, 2011, pp. 120-131.
[29] B. T. Raut, M. A. Chougule, S. R. Nalage, D. S. Dalavi, S. Mali, P. S. Patil and V. B. Patil, “CSA Doped Polyaniline /CdS Organic-Inorganic Nanohybrid: Physical and Gas Sensing Properties,” Ceramic International, 2012, in press. doi:10.1016/j.ceramint.2012.03.064
[30] S. G. Pawar, S. L. Patil, M. A. Chougule and V. B. Patil, “Microstructural and Optoelectronic Studies on Polyaniline: TiO2 Nanocomposite,” International Journal of Poly- meric Materials, Vol. 60, No. 3, 2011, pp. 244-254. doi:10.1080/00914037.2010.504175
[31] S. L. Patil, M. A. Chougule, S. G. Pawar, B. T. Raut, S. Sen and V. B. Patil, “New Process for Synthesis of ZnO Thin Films: Microstructural, Optical and Electrical Characterization,” Journal of Alloys and Compounds, Vol. 509, 2011, pp. 10055-10061. doi:10.1016/j.jallcom.2011.08.030
[32] S. L. Patil, S. G. Pawar, M. A. Chougule, S. Sen and V. B. Patil, “PANi-ZnO Nanocomposites: Synthesis and Characterization,” AIP Conference Proceedings, Vol. 1391, No. 1, 2011, pp. 621-623. doi:10.1063/1.3643629
[33] C. He, Y. Tan and Y. Li, “Conducting Polyaniline Nanofiber Networks Prepared by the Doping Induction of Camphor Sulfonic Acid,” Journal of Applied Polymer Science, Vol. 87, No. 9, 2003, pp. 1537-1540. doi:10.1002/app.11599
[34] Y. He, “A Novel Emulsion Route to Sub-Micrometer Polyaniline/Nano-ZnO Composite Fibers,” Applied Surface Science, Vol. 249, 2005, pp. 1-6. doi:10.1016/j.apsusc.2004.11.061
[35] H. C. Pant, M. K. Patra, S. C. Negi, A. Bhatia, S. R. Vadera and N. Kumar, “Studies on Conductivity and Dielectric Properties of Polyaniline-Zinc Sulphide Composites,” Bulletin of Materials Science, Vol. 29, No. 4, 2006, pp. 379-384. doi:10.1007/BF02704139
[36] T. K. Sarma and A. Chattopadhyay, “Reversible Encapsulation of Nanometer-Size Polyaniline and Polyaniline- Au-Nanoparticle Composite in Starch,” Langmuir, Vol. 20, No. 11, 2004, pp. 4733-4737. doi:10.1021/la0495884
[37] M. A. Chougule, S. L. Patil, S. G. Pawar, B. T. Raut, P. R. Godse, S. Sen and V. B. Patil, “Facile and Efficient Route for Preparation of Polypyrrole-ZnO Nanocomposites: Microstructural, Optical and Charge Transport Properties,” Journal of Applied Polymer Science, Vol. 125, No. S1, pp. E541-E547. doi:10.1002/app.36475
[38] E. Konyushenko, J. Stejkal, M. Trchova, J. hradil, J. Kovarova, J. Prokes, M. Cieslar, J. Y. Hwang, K. H. Chen and I. Sapurina, “Multi-Wall Carbon Nanotubes Coated with Polyaniline,” Polymer, Vol. 47, No. 16, 2006, pp. 5715-5723. doi:10.1016/j.polymer.2006.05.059
[39] S. L. Patil, M. A. Chougule, S. Sen and V. B. Patil, “Measurements on Room Temperature Gas Sensing Properties of CSA Doped Polyaniline-ZnO Nanocomposites,” Measurement, Vol. 45, No. 3, 2012, pp. 243-249. doi:10.1016/j.measurement.2011.12.012
[40] Y. P. Maminya, V. V. Davydenko, P. Pissis, E. V. Lebedev, “Electrical and Thermal Conductivity of Polymers Filled with Metal Powders,” European Polymer Journal, Vol. 38, No. 9, 2002, pp. 1887-1897. doi:10.1016/S0014-3057(02)00064-2
[41] J. C. Huang, “Carbon Black Filled Conducting Polymers and Polymer Blends,” Advances in Polymer Technology, Vol. 21, No. 4, 2002, pp. 299-313. doi:10.1002/adv.10025
[42] B. T. Raut, M. A. Chougule, S. Sen, R. C. Pawar, C. S. Lee and V. B. Patil, “Novel Method of Fabrication of Polyaniline-CdS Nanocomposites: Structural, Morphological and Optoelectronic Properties,” Ceramics International Journal, Vol. 38, 2012, pp. 3999-4007.
[43] B. T. Raut, M. A. Chougule and V. B. Patil, “Polyaniline-CdS Nanocomposites: Effect of Camphor Sulfonic Acid Doping on Structural, Microstructural, Optical and Electrical Properties,” Journal of Materials Science: Materials in Electronics, 2012, in press. doi:10.1007/s10854-012-0708-7

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.