Effect of Camphor Sulfonic Acid Doping on Structural, Morphological, Optical and Electrical Transport Properties on Polyaniline-ZnO Nanocomposites

Abstract

In the present work, we report on effect of camphor sulfonic acid (CSA) doping on polyaniline-ZnO (50%) nanocomposites prepared by spin coating method on glass substrates. The XRD analysis revealed that the addition of CSA has no effect on crystallinity of PANi-ZnO nanocomposites. Surface morphological studies (SEM) showed that CSA has a strong effect on morphology of PANi-ZnO. The FTIR & UV-Vis spectroscopy confirmed the interaction between CSA and PANi-ZnO nanocomposite. DC electrical conductivity studies showed an increase in conductivity of PANi-ZnO nanocomposites by one order due to addition of CSA (10% - 50%).

Share and Cite:

S. Patil, M. Chougule, S. Pawar, S. Sen and V. Patil, "Effect of Camphor Sulfonic Acid Doping on Structural, Morphological, Optical and Electrical Transport Properties on Polyaniline-ZnO Nanocomposites," Soft Nanoscience Letters, Vol. 2 No. 3, 2012, pp. 46-53. doi: 10.4236/snl.2012.23009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H. Choi, “Controlled Growth of Zinc Oxide Nanowires and Their Optical Properties,” Advanced Function Materials, Vol. 12, No. 5, 2002, pp. 323-331. doi:10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
[2] W. I. Park, G. Yi, M. Kim and S. L. Pennycock, “ZnO Nanoneedles Non-Catalytic Vapor-Phase Epitaxy,” Advanced Materials, Vol. 14, No. 24, 2002, pp. 1841-1843. doi:10.1002/adma.200290015
[3] L. Vayssieres, K. Keis, A. Hagfeldt and S. Lindquist, “Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes,” Chemistry of Materials, Vol. 13, No. 12, 2001, pp. 4395-4398. doi:10.1021/cm011160s
[4] C. Pacholski, A. Kornowski and H. Weller, “Selbstorganisation von ZnO: Von Nanopartikeln zu Nanost?bchen,” Angewandte Chemie, Vol. 114, No. 7, 2002, pp. 1234-1237. doi:10.1002/1521-3757(20020402)114:7<1234::AID-ANGE1234>3.0.CO;2-D
[5] V. B. Patil, S. G. Pawar, S. L. Patil and S. B. Krupanidhi,, “ZnO Nanocrystalline Thin Films: A Correlation of Microstructural, Optoelectronic Properties,” Journal of Materials Science: Materials Electronics, Vol. 41, No. 4, 2010, pp. 355-359. doi:10.1007/s10854-009-9920-5
[6] J. H. Lee, K. H. Ko and B. O. Park, “Electrical and Optical Properties of ZnO Transparent Conducting Films by the Sol-Gel Method,” Journal of Crystal Growth, Vol. 247, No. 1, 2003, pp. 119-125. doi:10.1016/S0022-0248(02)01907-3
[7] M. A. Chougule, S. L. Patil, S. G. Pawar, B. T. Raut, P. R. Godse, S. Sen and V. B. Patil, “Fabrication of Nanostructured ZnO Thin Film Sensor for NO2 Monitoring,” Ceramic International, Vol. 28, 2012, pp. 2685-2692. doi:10.1016/j.ceramint.2011.11.036
[8] V. Gupta and A. Mansingh, “Influence of Post-Deposition Annealing on the Structural and Optical Properties of Sputtered Zinc Oxide Film,” Journal of Applied Physics, Vol. 80, 1996, pp. 1063-1073. doi:10.1063/1.362842
[9] S. L. Patil, S. G. Pawar, A. T. Mane, M. A. Chougule and V. B. Patil, “Nanocrystalline ZnO Thin Films: Optoelectronic and Gas Sensing Properties,” Journal of Materials Science: Materials in Electronics, Vol. 21, No. 12, 2010, pp. 1332-1336. doi:10.1007/s10854-010-0071-5
[10] L. Vayssieres, K. Keis, A. Hagfeldt and S. Lindquist, “Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes,” Chemistry of Materials, Vol. 13, No. 12, 2001, pp. 4395-4398. doi:10.1021/cm011160s
[11] S. L. Patil, S. G. Pawar, M. A. Chougule, B. T. Raut, P. R. Godse, S. Sen and V. B. Patil, “Structural, Morphological, Optical & Electrical Properties of PANi-ZnO Nanocomposites,” International Journal of Polymeric Materials, in press. doi:10.1080/00914037.2011.610051
[12] B. W. J. E. Beek, L. H. Slooff, M. N. Wienk, J. M. Kroon and R. A. J. Janseen, “Hybrid Solar Cells Using a Zinc Oxide Precursor and a Conjugated Polymer,” Advanced Functional Materials, Vol. 15, No. 10, 2005, pp. 1703- 1709. doi:10.1002/adfm.200500201
[13] X. M. Sui, C. L. Shao and Y. C. Liu, “Photoluminescence Properties of Highly Dispersed ZnO Quantum Dots in Polyvinyl Pyrrolidone Nanotubes Prepared by a Single Capillary Electrospinning,” Applied Physics Letters, Vol. 87, 2005, pp. 113-118.
[14] D. C. Olson, J. Piris, R. T. Colins, S. E. Shaheen and D. S. Ginley, “Hybrid Photovoltaic Devices of Polymer and ZnO Nanofiber Composites,” Thin Solid Films, Vol. 496, No. 1, 2006, pp. 26-29. doi:10.1016/j.tsf.2005.08.179
[15] Z. X. Xu, V. A. L. Roy, P. Stallinga, M. Muccini, S. Toffanin, H. F. Xiang and C. M. Che, “High Efficiency Phosphorescent Organic Light-Emitting Diodes Using Carba- zole-Type Triplet Exciton Blocking Layer,” Applied Physics Letters, Vol. 90, No. 22, 2007, pp. 223505-223509. doi:10.1063/1.2742788
[16] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A. Heeger, “Flexible Light-Emitting Diodes Made from Soluble Conducting Polymers,” Nature, Vol. 357, No. 6378, 1992, pp. 477-479. doi:10.1038/357477a0
[17] M. J. Sailor, E. J. Ginsburg, C. B. Gorman, A. Kumar, R. H. Grubbs and N. S. Lewis, “Thin Films of n-Si/Poly- (CH3)3Si-Cyclooctatetraene: Conducting-Polymer Solar Cells and Layered Structures,” Science, Vol. 249, No. 4973, 1990, pp. 1146-1149. doi:10.1126/science.249.4973.1146
[18] X. He and W. Qi, “Ultrasonic irradiation: A Novel Approach to Prepare Conductive Polyaninine/Nanocrystal- line TiO2 Composites,” Chemistry of Materials, Vol. 14, 2002, pp. 2158-2165. doi:10.1021/cm0109591
[19] C. Danielle, S. Michelle, A. Ivo and Z. Aldo,” Preparation and Characterization of Novel Hybrid Materials Formed from (Ti, Sn)O2 Nanoparticles and Polyaniline,” Chemistry of Materials, Vol. 15, 2003, pp. 4658-4665. doi:10.1021/cm034292p
[20] J. Park, S. Park, A. Koukitu, O. Hatozaki and N. Oyarna, “Electrochemical and Chemical Interactions between Polyaniline and Palladium Nanoparticles,” Synthetic Metals, Vol. 141, No. 3, 2004, pp. 265-269. doi:10.1016/S0379-6779(03)00410-7
[21] R. Chandrakanthi and M. Careem, “Preparation and Characterization of CdS and Cu2S Nanoparticle/Polyani-Line Composite Films,” Thin Solid Films, Vol. 417, No. 1-2, 2002, pp. 51-56. doi:10.1016/S0040-6090(02)00600-4
[22] S. Pethkar, R. Patil, J. Kher and K. Vijayarnohanan, “Deposition and Characterization of CdS Nanoparticle/ Polyaniline Composite Films,” Thin Solid Films, Vol. 349, No. 1-2, 1999, pp. 105-109. doi:10.1016/S0040-6090(99)00222-9
[23] M. Matsumura and T. Ohno, “Concerted Transport of Electrons and Protons across Conducting Polymer Membranes,” Advanced Materials, Vol. 9, No. 4, 1997, pp. 357-359. doi:10.1002/adma.19970090416
[24] H. Yoneyama, N. Takahashi and S. Kuwabata, “Catalytic Asymmetric Reaction of Lithium Ester Enolates with Imines,” Journal of the Chemical Society, Chemical Communications, Vol. 2, No. 8, 1999, pp. 716-719.
[25] T. A. Skotheim, R. Elsenbaumer and J. Reynolds, Eds., “Handbook of Conducting Polymers,” Marcel Dekker, New York, 1998.
[26] B. T. Raut, P. R. Godse, S. G. Pawar, M. A. Chougule, S. Sen, R. C. Pawar, C. S. Lee and V. B. Patil, “Novel Method of Fabrication of Polyaniline-CdS Nanocomposites: Structural, Morphological and Optoelectronic Properties,” Ceramic International, Vol. 38, No. 5, 2012, pp. 3999-4007. doi:10.1016/j.ceramint.2012.01.056
[27] J. Stejkal, I. Spurina, M. Trchova, J. Prokes, J. Krivka and E. Tobolkova, “Solid State Protonation and Electrical Conductivity of Polyaniline,” Macromolecules, Vol. 31, No. 7, 1998, pp. 2218-2222. doi:10.1021/ma970823h
[28] S. L. Patil, M. A. Chougule, S. G. Pawar, S. Sen and V. B. Patil, “Development of Polyaniline-ZnO Nanocomposite Gas Sensor,” Sensors and Transducers, Vol. 134, No. 11, 2011, pp. 120-131.
[29] B. T. Raut, M. A. Chougule, S. R. Nalage, D. S. Dalavi, S. Mali, P. S. Patil and V. B. Patil, “CSA Doped Polyaniline /CdS Organic-Inorganic Nanohybrid: Physical and Gas Sensing Properties,” Ceramic International, 2012, in press. doi:10.1016/j.ceramint.2012.03.064
[30] S. G. Pawar, S. L. Patil, M. A. Chougule and V. B. Patil, “Microstructural and Optoelectronic Studies on Polyaniline: TiO2 Nanocomposite,” International Journal of Poly- meric Materials, Vol. 60, No. 3, 2011, pp. 244-254. doi:10.1080/00914037.2010.504175
[31] S. L. Patil, M. A. Chougule, S. G. Pawar, B. T. Raut, S. Sen and V. B. Patil, “New Process for Synthesis of ZnO Thin Films: Microstructural, Optical and Electrical Characterization,” Journal of Alloys and Compounds, Vol. 509, 2011, pp. 10055-10061. doi:10.1016/j.jallcom.2011.08.030
[32] S. L. Patil, S. G. Pawar, M. A. Chougule, S. Sen and V. B. Patil, “PANi-ZnO Nanocomposites: Synthesis and Characterization,” AIP Conference Proceedings, Vol. 1391, No. 1, 2011, pp. 621-623. doi:10.1063/1.3643629
[33] C. He, Y. Tan and Y. Li, “Conducting Polyaniline Nanofiber Networks Prepared by the Doping Induction of Camphor Sulfonic Acid,” Journal of Applied Polymer Science, Vol. 87, No. 9, 2003, pp. 1537-1540. doi:10.1002/app.11599
[34] Y. He, “A Novel Emulsion Route to Sub-Micrometer Polyaniline/Nano-ZnO Composite Fibers,” Applied Surface Science, Vol. 249, 2005, pp. 1-6. doi:10.1016/j.apsusc.2004.11.061
[35] H. C. Pant, M. K. Patra, S. C. Negi, A. Bhatia, S. R. Vadera and N. Kumar, “Studies on Conductivity and Dielectric Properties of Polyaniline-Zinc Sulphide Composites,” Bulletin of Materials Science, Vol. 29, No. 4, 2006, pp. 379-384. doi:10.1007/BF02704139
[36] T. K. Sarma and A. Chattopadhyay, “Reversible Encapsulation of Nanometer-Size Polyaniline and Polyaniline- Au-Nanoparticle Composite in Starch,” Langmuir, Vol. 20, No. 11, 2004, pp. 4733-4737. doi:10.1021/la0495884
[37] M. A. Chougule, S. L. Patil, S. G. Pawar, B. T. Raut, P. R. Godse, S. Sen and V. B. Patil, “Facile and Efficient Route for Preparation of Polypyrrole-ZnO Nanocomposites: Microstructural, Optical and Charge Transport Properties,” Journal of Applied Polymer Science, Vol. 125, No. S1, pp. E541-E547. doi:10.1002/app.36475
[38] E. Konyushenko, J. Stejkal, M. Trchova, J. hradil, J. Kovarova, J. Prokes, M. Cieslar, J. Y. Hwang, K. H. Chen and I. Sapurina, “Multi-Wall Carbon Nanotubes Coated with Polyaniline,” Polymer, Vol. 47, No. 16, 2006, pp. 5715-5723. doi:10.1016/j.polymer.2006.05.059
[39] S. L. Patil, M. A. Chougule, S. Sen and V. B. Patil, “Measurements on Room Temperature Gas Sensing Properties of CSA Doped Polyaniline-ZnO Nanocomposites,” Measurement, Vol. 45, No. 3, 2012, pp. 243-249. doi:10.1016/j.measurement.2011.12.012
[40] Y. P. Maminya, V. V. Davydenko, P. Pissis, E. V. Lebedev, “Electrical and Thermal Conductivity of Polymers Filled with Metal Powders,” European Polymer Journal, Vol. 38, No. 9, 2002, pp. 1887-1897. doi:10.1016/S0014-3057(02)00064-2
[41] J. C. Huang, “Carbon Black Filled Conducting Polymers and Polymer Blends,” Advances in Polymer Technology, Vol. 21, No. 4, 2002, pp. 299-313. doi:10.1002/adv.10025
[42] B. T. Raut, M. A. Chougule, S. Sen, R. C. Pawar, C. S. Lee and V. B. Patil, “Novel Method of Fabrication of Polyaniline-CdS Nanocomposites: Structural, Morphological and Optoelectronic Properties,” Ceramics International Journal, Vol. 38, 2012, pp. 3999-4007.
[43] B. T. Raut, M. A. Chougule and V. B. Patil, “Polyaniline-CdS Nanocomposites: Effect of Camphor Sulfonic Acid Doping on Structural, Microstructural, Optical and Electrical Properties,” Journal of Materials Science: Materials in Electronics, 2012, in press. doi:10.1007/s10854-012-0708-7

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.