Step 1: Note down the given points as well as assign these points with the variables

EXAMPLE: ( 7, 4 ) assign this point with (x_1, y_1)

( 2, 0 ) assign this point with (x_2,y_2)

................etc

Step 2: Calculate gradient or slope(m) from two points

FORMULA: \frac{y-change}{x-change},

or \frac{y_2 - y_1}{x_2 - x_1}

EXAMPLE: Slope of A(7, 4) and B(2, 0 )

\frac{4-0}{7-2} = \frac{4}{5}

Step 3: Find the slope of the another line.

NOTE: i) Parallel lines have the same slope.

ii) Perpendicular lines have slopes that are opposite reciprocals, like

\frac{a}{b} \text{ and } \frac{-b}{a}. The slopes also have a product of -1

Step 4: Substitute either values slope(m) and any one point into the equation of a straight line.

FORMULA: Equation of a straight line

y - y_1 = m(x - x_1)

Where m = slope and ( x_1, y_1) = any point

EXAMPLE: I took (2, 0) as a point and m = \frac{4}{5}

y - 0 = \frac{4}{5} ( x - 2)

5y = 4x - 8

Step 5: Simplify and make the equation in the form of Ax + By + C =0