_{1}

^{*}

A dynamic interpretation of quantum phenomena based on an energy driven time arrow requires a combined description of matter and information on matter. This information around matter turned out to be gravitation and the fact that a photon is continuously recycled via this information generates an always constant light velocity. These two phenomena, simple consequences of fundamental irreversibility, have mathematically been imposed on empty space for time-neutral spacetime in General Relativity theory. In an irreversible universe such a four-dimensional spacetime would not anymore be required. Another striking difference is the role of time. Clock-time, used in Relativity Theory and found to be relative, is not associated with a generation of changes, being only a scale for measuring changes, based on selected periodic phenomena. The real time in an irreversible world, action time, is the flow of action, as generated by the principle of least action, or, alternatively, the loss of information on the past. In contrast to clock-time, action time is invariant with respect to relativistic transformation and also facilitates self-organization of matter and information. Gravitation as information on matter with the aim of imposing the principle of least action also provides the link between quantum world and cosmology, which Relativity Theory cannot provide. Relevant aspects of both theoretical approaches, with special emphasis on already experimentally verified spacetime phenomena, are critically analysed. While Relativity Theory, which is relying on time-neutral laws, is applied to support a chaotically exploding Big Bang scenario, the fundamentally irreversible universe subject to an energy driven time arrow is characterized by self-organization of energy, matter and information yielding an intelligent and creative “Self-Image” universe, which is able to periodically regenerate itself. Arguments for a fundamentally irreversible energy driven nature include, apart from explaining experimental support for Relativity Theory differently, the simple, straightforward derivation from a dynamically interpreted principle of least action, the elimination of quantum and cosmological paradoxes and the more sensitive and flexible information-technology based (digital) nature of gravitation as compared with the analogue “bent space” gravitation.

When ad-hoc postulates of an established time-neutral theory can readily be derived from a new, simpler irreversible one, a review of the scientific situation concerned is required. This is done with this publication. During a recent effort, aimed at investigating and eliminating paradoxes in physical theories the principle of least action was interpreted in a dynamic way leading to the conclusion that energy should not be considered to be a scalar quantity, only with the ability, not the interest to do work. It should be considered to be a dynamic variable, a vector, with an interest to do work and the ability to drive time [

The information on matter, needed to mediate particle-wave duality in an irreversible world, which has an energy content, turned out to be what is called gravitation, and a photon, travelling and using this information for particle-wave interconversion (compare

including its always constant velocity, in relative reference systems. It is like transmitting digital information to a flying airplane. The information received is independent of flight direction and flight velocity. Summarizing, the irreversible world, subject to the energy driven time arrow, yields the always constant, absolute light velocity and gravitation (including inertia within a situation of equivalence, when the drive to reduce the presence of energy per state is violated) as fundamental properties deducible from dynamic quantum states.

This is a very stimulating result, however also highly intriguing, since the established and experimentally well tested Relativity Theories were, one century ago, developed for the purpose of explaining exactly these two phenomena. It is well known that after efforts with an ether theory failed, Einstein simply stated that these experimentally verified phenomena of the always constant light velocity and of gravitation (including inertia) are imposed by empty space, claiming space-time properties. The necessary field equations for space were developed and adapted accordingly. Now, after one century of discussions and experimentation the Relativity Theory is so well accepted that criticism is considered not anymore relevant. The four-dimensional spacetime, as well as various relativity phenomena and ideas, including time dilation and time travel, the Big Bang scenario, space inflation, universe expansion, black holes and gravity waves are already discussed even in schools as part of the now established space-time concept of our universe [

The situation encountered is quite remarkable: On one hand there is the fully developed science structure based on time-neutral concepts with clock-time only used as a scale for measuring changes, and with experimentally well confirmed theories with significant paradoxes and irrational explanations (energy from nothing, effect without cause, inflation of empty space, non-locality, zero point energy, additional dimensions, multi-worlds). On the other hand there is a starting effort [

The time-neutral world concept sees absolute light velocity, gravitation and inertia as properties of empty space. The long searched for link between quantum world and cosmos could still not be identified. Clock-time, with its function as scale for measuring changes and with its origin from periodic phenomena such as pendulum movements, quartz oscillations and electronic transition frequencies in atoms, turned out to be an illusion (opinion also expressed by Einstein).

The Dynamic Energy concept (in the following also named Time Arrow concept), in contrast, sees absolute light velocity and gravitation as local particle properties reflecting mechanisms of information on matter, the information engaged in dynamic particle-wave duality [

A fundamental difference between the two models is also that in the Dynamic Energy approach the two properties, absolute light velocity and gravitation, are just side results of quantum reasoning, while, in the Time-Neutrality world model they are, via Relativity Theory, additionally postulated to be properties of empty space. They are postulated as additional phenomena.

As a basis for discussion

On the right side it is explained, how the Dynamic Energy approach derives irreversibility from the principle of least action and imposes a dynamic particle wave duality mediated by information on matter (marked with dotted squares, visualizing an “i” indicating information). This, together with the notion, equally deducible form the principle of least action, that energy driven time is the flow of action, or the loss of information on the past, is all what is needed to deduce the always constant light velocity, gravitation, entropy formation by spreading, propagating photons, and an entirely different, information dominated universe. The Dynamic Energy approach claims to be able to eliminate quantum paradoxes (effect without cause, non-locality, fundamental uncertainty, zero-point energy) and paradoxes in cosmology (energy from nothing, space inflation, dark matter and energy) [

From this comparison it can be deduced, that the two approaches are not compatible in their dealing with always constant light velocity and gravitation (including inertia) and time. The Dynamic Energy model derives its basic claim that energy is fundamentally dynamic and oriented from the principle of least action [

In contrast, on the basis of the Time-Neutrality paradigm and the General Relativity theory significant claims had to be made in relation to space (

However, due to its one century long history and many experimental efforts, there is at presence overwhelming support for Relativity Theory. This is, last not least also due to very costly experiments, which have produced quite tiny measured values, interpreted in favour of Relativity Theory (the LIGO and the Gravity B probe experiments alone have together cost two billion dollars).

What are the prospects of challenging General Relativity under such conditions? Comparing General Relativity theory with the new Dynamic Energy approach may sharpen our understanding of the universe, especially since it is essentially a confrontation of a time-reversible nature with a fundamentally irreversible one. Is nature fundamentally time-neutral even though everything is moving into one direction only and far from equilibrium processes are so dominating in shaping galactic structures and living organisms? The challenge of confronting both theories is also justified because the Dynamic Energy approach is claiming to eliminate the increasing number of paradoxes and irrationalities, which the paradigm of Time-Neutrality and Space-Time has generated. In addition, only one of the two approaches to describe nature can be correct.

In the following it will be attempted to compare and evaluate essential features of the two theories to understand the crucial differences and to identify experimental and theoretical steps for answering the questions posed. While the Dynamic Energy (Time Arrow) approach pictures a highly intelligent, spiritual universe, the Big Bang universe, explained by General Relativity theory, describes a quite primitive, exploding universe, in which life developed by chance without aim, and mind and spirit get no explanation.

The energy driven time arrow approach is still in its infancy and lacks an elaborate mathematical framework. However, it offers explanations for gravitation and the absolute light velocity, which were not artificially attributed to space (as in General Relativity theory), but simply followed from the quest for a description of nature on the basis of an irreversible, energy driven Time Arrow. It also claims, that clock time is just a time scale for measurement, but not representing the real time flow, which is generated by a dynamic energy. The quite dramatic turning-point generated by postulating a fundamentally irreversible world (

Einstein’s two Theories of Relativity find so much support that critical analyses are usually no longer accepted for publication. Is this persuasiveness of the theories based on irrevocable theoretical and experimental facts? Einstein himself once commented to a journalist that it is the “mystery of not understanding that attracts many people who indeed do not understand” [

It is not the subject of the present paper to deal with questions related to the mathematical formalism of Relativity Theory. It should only be mentioned that it is conspicuous, that conservation of energy, momentum and angular momentum are not considered in it, even though far reaching conclusions are drawn on highly dynamic energetic phenomena in the universe (Big Bang, inflation of space, Black Holes, expansion of the universe). There is also no explanation on how empty space, without matter and structure in it, can physically develop such sophisticated properties as space-time theory claims (e.g. acceleration of objects, manipulation of time, adjustment of light velocity). Space-time, which will never reveal the physical origin of its properties is, in this respect, a dead end for scientific understanding.

Why is it, after one century of continuous rise and confirmation of Relativity Theory and much unsuccessful criticism now justified to challenge this theory again? There is a significant reason: One is not any more just dealing with a mere criticism, like in numerous earlier efforts. It is for the first time that a counter theory on the basis of much simpler and more reasonable assumptions, which explain the always constant light velocity, gravitation, inertia and time differently, takes shape. It also naturally explains the relation between the quantum world and the cosmos, which Relativity Theory and Standard Model of elementary particles could not provide. This new, alternative universe turns also out to behave much more intelligent than deducible on the basis of the Big Bang scenario. It can explain the thrust of biological evolution as well as evolution of spirit through self-organization of information and replaces the Big Bag explosion of energy from nothing, inflation of empty space as well as accelerating expansion of the universe with a more logic interpretation. In addition, the challenge of questioning Relativity Theory means to simultaneously discuss, whether nature is fundamentally time-neutral, as presently assumed in physics, or fundamentally irreversible, as the Dynamic Energy theory claims. Is our universe governed by fundamentally time-neutral laws and mechanisms, and is time an illusion, even though everything is visibly moving in one direction only? This alone already gives justification for this attempt to question the time neutral world of space-time.

It is well known that present concepts of nature including elementary particle (Standard Model) theory, quantum theory and relativity theory are based on time-neutral concepts. All mechanisms can proceed in positive as well as negative time direction and fundamental laws of physics allow that. The only time orientation presently accepted in physics is that in direction of increasing probability and increasing entropy. A system assumes a more disordered condition characterized by a minimum information on it.

The author, in his effort to demonstrate fundamental irreversibility, has criticised such a concept and its mathematical basis [_{1} to S_{2} by ΔS. It loses thereby information. Since information has an energy content, where does this energy go? Energy has to be conserved. The concept of a purely entropic time arrow does not work. The author argues that the entropy increase by ΔS can be multiplied by the absolute temperature T to yield the energy quantity TΔS, “entropic” energy. Now, considering the first law of thermodynamics on energy conservation one can ask, where this entropic, not anymore available energy came from. It could only have been derived from Gibbs free energy ΔG. This however means that not the statistical drive towards disorder, but that a “dynamic” (free) energy as a dynamic variable is the real source of changes towards increasing entropy. Energy has an interest in doing work! This is, of course, not consistent with the presently established concept of a “scalar” energy as a quantity of state, with the ability, but no interest to do work.

When the author studied the important principle of least action he found that also energy within this principle has to be considered “dynamic”, because only that way extremal, least action values can be reached at all, and that the principle is expressing a fundamentally irreversible world [

Since antiquity many thoughts have been reported on the meaning of time, and during the last century numerous books have been written on the subject (e.g. [

For present science, with its time-neutral particles and laws, and emphasized by personalities like Einstein, time is an illusion. It is just used as an ordering parameter to monitor changes. The Theory of Relativity shows, that time depends on relative movement and each system has its own time. The time used is clock-time, which is just a sequence of numbers, a scale or ruler for measuring changes, without any relation to matter or energy. It can therefore not be directly measured, but has to be derived from energy converting clocks. These clocks, however, do nothing more than to activate a periodical process, such as a pendulum movement, the oscillation of a quartz platelet, or the electron relaxation in an atom. Such time lapses during oscillations, which are just determined by natural or material constants and have no relation to energy turnover themselves, are summed up and calibrated against periodic astronomical phenomena to yield seconds, hours and days (compare

It is this clock time, which is just a scale and has nothing to do with energetic processes, which is multiplied with light velocity and became the axis of the fourth dimension in the four-dimensional space-time of Relativity Theory. It is this clock time, which, in the Theory of Relativity is relativistic dilated when calculated for a fast moving reference system. For an atomic clock this means that atomic parameters are thereby changed. This actually happens. Atomic clocks travelling around the globe show time dilations in the order of fractions of a microsecond (e.g. Hafele-Keating experiment). Within the Theory of Relativity part of this effect is attributed to gravitational effects, part to relative movements. But, in fact, only the properties of a scale have been changed due to changed physical parameters. Within the Dynamic Energy concept, it is not the real time which changed but only the scale for measuring it.

Within the concept of a “dynamically” understood energy, and with such a dynamic energy acting via the principle of least action, a real, irreversible energy driven time can readily be defined. It is the flow of action (energy times time), which is activated as the consequence of the principle of least action and can be called action time (

in the 4th century BC, observed. He said: “Time is the measure of a movement that takes place from a before to an after”. Movement requires energy. Then time is a measure for energy turnover. This is exactly what the Dynamic Energy approach states and it can give additional information: Since dynamic processes are proceeding via a reduction of energy per state this action time equally means “loss of information on the past”. Such a statement is comprehensible and fully logical: the information, which we have recognized just instances before in our environment, is gone. Just some fragments of memory remain in our brain.

Why is sand moving in an hourglass? It is moving, because energy (gravitational energy) is dynamically active. What is this activity like, when energy, during energy conversion, remains fully conserved? The above given definition, that “it decreases and minimizes its presence per state” implies that order, available within the energy system is being reduced. This way energy is redistributed. In the case of chemical energy (e.g. a carbon-hydrogen bond), or of a photon as primary energy source, elaborate arrangements of energy and materials are abandoned during the energy conversion process to finally only show low temperature kinetic energy. This shows, that it is order, information about the energy system, which is given up during the energy conversion process to yield disorder while energy in total is conserved. The flow of action (energy times time) in such an energy conversion process ( d ( Δ E t ) / d t ) is thus generated by a reduction of order (information) within the energy system. It is consequently equivalent to say that it is the flow of abandoned information on the past ( d I a b / d t ) that characterizes fundamental energy driven time. In this case, since the lost information concerned is linked to energy, there is no problem with energy conservation. It is considered in the energy balance of the entire process. It is this abandonment of information (on energy) that implements the redistribution and conversion of energy thus causing the flow of action.

Energy driven time, or action time, can therefore be formally written in the following way (here t is the clock time and Δ E the energy turned over:

energydriventime = actiontime = d ( Δ E t ) d t = d I a b d t (1)

and from this equation clock-time can be deduced

clocktime t = I a b Δ E (2)

This clock-time does not any more correspond to the flow of abandoned information due to energy turnover. It is an energy neutral statement of abandoned information per energy turned over. Clock-time is a standard, a calibrated scale for measuring changes. It is for this reason, that clock time is subject to dilation, when transformed within Relativity Theory, since it refers to the energy of moving systems, where energy can be determined to be correspondingly larger.

Both equivalent definitions of the proposed real time arrow (1), the flow of action, and the flow of abandoned information on the past are invariant with respect to relativistic transformation and can directly be measured, because they are characterized by an energy content. But clock time (2) is not, since the invariant information flux is considered per energy turned over. It is just a scale for measuring time. A certain amount of information turnover per energy is considered and counted as a scale. Relativity theory uses clock time for constructing the fourth dimension and draws important conclusions from relativistic time properties. On the basis of the here given definition of energy driven time, action time (1), it should be this time, action time, and not clock-time (2), which should be used in formulas, which aim at the description of the universe, when highly dynamic mechanisms are to be derived as conclusions.

Relativity theory implements, via the field equations, relevant experimentally verified properties into empty space: they concern the ability of always sustaining the absolute light velocity and the capacity to simulate gravitation and inertia, while respecting the equivalence principle, by adequately accelerating masses. Since these introduced properties actually prevail, this may explain the astonishing apparent experimental meaningfulness of General Relativity theory. The properties of space yield what has been introduced as a theory. But it is well known that these introduced properties cause the now four-dimensional space-time to bend, since gravity has become a geometric property of space-time. A satellite around a celestial body thereby feels a force at close distance, since it is moving along a curved space tracing its trajectory. For understanding, what it means in practice, when a body is deviated by a bent space around a mass let us look at an example. The difference in gravitation forces, and the degree of bent space, between two neutrons and two weights of one kilo is of the order of 10^{54}. Gravitation means bending of space and bending is induced by the energy momentum tensor in relativity theory. Can one imagine a detectable bending of space, equivalent to gravitational acceleration, around spherical objects differing by a factor of the order of 10^{54}? A passing and interacting particle should nevertheless be able to register the differences and to respond properly to a highly varying gravitation. A bent space around a mass must communicate itself as an analogue signal. Technical experience shows that an analogue signal (which continuously varies as quantity to be registered) can only be measured within 0.01% of its maximum signal (three digits behind the comma), and has to be regularly calibrated. Gravitational changes of up to and trespassing a range of 10^{54} can never be registered via an analogue signal of bent space around a sphere. How accurate are gravitation signals measured in practice? This question will be discussed later.

Within the Dynamic Energy theory gravitation is information with the requirement to reduce energy per state while imposing the principle of least action. Phenomena controlled by information are not limited by analogue restrictions and also readily explain, what happens, when the mentioned requirement is violated and the energy per state tends to increase. If this minimisation condition is violated and energy per state increases, then a counter force results, equivalent to energy per distance travelled. This is inertia fulfilling the equivalence principle. It responds to the gravitation of matter from the entire universe, as Ernst Mach proposed. The Dynamic Energy theory has no problem explaining inertia.

Another question is to understand the implementation of absolute light velocity within the four-dimensional space time. Let us imagine a photon approaching an object coming closer at very high speed. When hitting it light velocity measured on the object must be the known absolute value. When, before the encounter, and how is such an adjustment made in a time-neutral world? It formally works, of course, because mathematics imposes it, but it is not easily understandable. This also concerns the time around masses in space-time. Within the Theory of Relativity time is actually variable and manipulated depending on the distance of a mass. How can, on a physical basis time be manipulated? In terms of an atomic clock this means, as explained before, that atomic parameters must change. They can change due to a changed gravitation, but this does not mean that time itself, the energy driven time, is dilated that way.

When the concept of an energy driven time arrow was applied to quantum phenomena, it turned out that matter (energy), concentrated in a particle, and energy spread out as wave had to be linked via an information image of matter (energy). It has to be set aside to support the back conversion of the wave into the particle [

This, of course, motivated and urged to explore, whether this supports a fundamentally irreversible universe subject to an energy driven time arrow. It became necessary to confront it with the time-neutral, already well-established universe shaped by General Relativity (

Such a confrontation is, in fact, unavoidable, because only one of these two world models for explaining nature can survive. Absolute light velocity and gravitation are either information-controlled properties of an energy driven time arrow, or they are properties of free space, as General Relativity implemented them. The first approach is entirely rational and quite simple, the second a mathematical construction which generates numerous paradoxes and irrationalities (four dimensions, relativistic time and length changes, time travel, space inflation) which, however, already, according to specialists, has produced surprising experimental support.

Since the rise of quantum and Relativity Theory scientists have searched for a unifying link between them. The discipline of quantum gravitation, for example, studies that, aiming for a “Theory of Everything”. String-theory is another research orientation, which searches for such a connection. Up to now it was not found.

The energy driven Time Arrow approach, in dealing with quantum phenomena, found this link quite naturally. The self-image of matter in form of information, mediating the particle wave exchange was identified with gravitation and the same information (or gravitation) also controls the dynamics of the universe. A remarkable consequence of this finding is, that what we call gravitation is in fact information on matter. This implies that our universe is essentially controlled by information, which has significant further consequences (see later). But it also readily explains, why the measured difference in gravitation between two neutrons and two weights of one kilo of 10^{54} does not pose problems for function and detection. It is a difference in numbers, registered as information without the need of an intermediate registration as analogue signal of space bending. Of course, a big task for the future will be to decipher the information code of nature and to understand, how information can be turned over during generation of action.

Special and General Theory of Relativity have puzzled with their very characteristic phenomena. Below, with relation (3), it is shown how the length of an object is reduced, when its velocity v is approaching the speed of light c. It is seen, that it is shrinking and finally disappearing. The next formula (4), also well known, is showing, how the time interval Δ t 0 between two subsequent instances (e.g. seconds) is increasing with increasing velocity v of an object. Approaching the light velocity the clock cycle is getting larger and larger until finally clock-time stops. The first example of a rocket, shrinking at high speed, rises the question, how this could occur with a stiff object, which subsequently may land in full size. The second example of time dilation, in turn, is the basis of numerous paradoxes which deal with time travel.

When trying to judge these well known predicted phenomena it is of interest to point out, that these relativistic phenomena are only seen, when the object is analysed in direction of movement. Observers analysing it perpendicular to the movement will not see this effect (

Since objects with simultaneously different spatial measures and different time cannot exist, one is apparently dealing with a problem of measurement. The measurement occurs with light, which serves for transmitting the signals. Two measurements have to be made for measuring length and a time interval respectively. During that interval the object is moving with the velocity v. It is learned how the ratio of object velocity v and light velocity c is affecting measured data. This is definitively a measurement artefact due to the limited light velocity and not information on the studied object. Indeed, when the light velocity in these formula (3) and (4) is set to become infinite, the relativistic effects just disappear.

This means that, in this case of simultaneity, the scale for measuring changes is not compressed or stretched due to a finite transmitting light velocity.

l = l 0 1 − v 2 c 2 (3)

Δ t = Δ t 0 1 − v 2 c 2

The energy driven Time Arrow approach states, that energy converting systems do not follow clock-time (2), but are subject to action time (1). Within the energy driven Time Arrow universe one would not transform the clock-time which is just a ruler or scale for passive measurements of changes. One would transform the real time (1), the flow of action or the flow of abandoned information on the past. Both are relativistic invariant so that moving energy converting objects would see the same time flow. All paradoxes with time travelling then simply disappear.

If one would like to find out clock-time on a moving object, the travellers would have to determine action time, measured for their object, and divide it by the locally turned over energy (2). When the conditions and calibration procedures are the same, also clock-time would be the same. This does not support the statement that every relatively moving object has its own time and that time is an illusion (comment also by Einstein). There is a simple intellectual consideration, that could support such a conclusion. The presently as one of the most distant recognized galaxies, Abell 1835 IR 1916, has a redshift, which indicates it is drifting away with 97% of light velocity. Clocks there on a similar planet, calculated via relativistic theory, should proceed 4 times slower. Observers there would, however, conclude the same from our galaxy. Does this make sense? Do we have a slowed down evolution, because we see galaxies escaping at a high speed?

The energy driven Time Arrow approach would not expect any difference in time flow when similar environmental conditions prevail. And it would also challenge the claimed high relative velocity seen in the (cosmological) redshift. It is not caused by the expansion of space, but is a consequence of entropy loss by propagating photons (see later).

A significant problem with General Relativity theory, according to the author, is, that the clock-time used is not relevant for transmitting useful information on changes and for calculating action. It is a scale for change only, a sequence of numbers. Another one is that matter and laws which control it were defined to be time neutral. Nevertheless, General Relativity theory is used to justify and describe highly dynamic phenomena, the Big Bang scenario, the inflation of space, to understand Black Holes and to investigate the accelerating expansion of the universe.

Today the dynamics of the universe is deduced by back and forward calculating the field equations of General Relativity, which describe the relation between the geometry of space time and the energy-momentum distributed in it. Considering the apparent dynamics of the redshift of galaxies and stars they attribute to the universe an age of 13.8 billion years while it was stretched to a dimension of approximately 78 billion light years. That this rate of expansion exceeded light velocity is not considered a problem, since it is the empty space, which is assumed to have supported this stretching activity. But how can empty space, with no material properties defining it, do this?

The energy driven Time Arrow approach identified time flow as flow of action with changes in the environment (1). It is not just a scale for monitoring changes (2) (compare

With imposed conditions of absolute light velocity and a gravitation subject to the equivalence principle both theories, the General Relativity theory and the Dynamic Energy approach, should have the ability to explain at least part of existing phenomena. One significant difference is, however, the fourth dimension in the General Relativity theory, which gives rise to a very different space structures and phenomena. What can one learn from the different types of experimental tests of General Relativity theory?

Among the successful predictions of General Relativity one could mention the deflection of light by the sun, the gravitational redshift of light, gravitational lensing, equivalence principle testing. These phenomena are just consequences of gravitation, including the equivalence principle and the absolute light velocity, introduced in the General Relativity theory as property of space. These mechanisms really exist, and therefore act. But for the success of experiments it is not clear whether they originate from empty space or from quantum processes.

General relativity is less sensitive with respect to predictions concerning space properties. It cannot tell whether the universe is static or dynamic. It cannot account for the inhomogeneous, granular appearance of the universe, since it treats it as homogeneous. It cannot say anything about the value of the Hubble constant nor about dark energy and dark matter, which are expected to occupy large areas in the universe. Singularities can be identified, but whether they are really Black Holes or just indicate where the theory fails remains an open question.

The author believes that this poor ability in dealing with space properties may in part be caused by the introduction of clock time into the fourth dimension of spacetime. It acts as a scale for measuring changes only, and, since it has no direct relation to matter or energy, cannot implement and communicate action.

However, in General Relativity tests, certain phenomena, attributed to gravitational distortion of space-time could be predicted and were tested: The perihelion precession of Mercury, in part attributed to spacetime distortions, can be calculated. For Mercury’s perihelion movements by 575 arcsec/century, of which only 532 arcsec/century could be accounted for by classical Newtonian gravity calculations, General Relativity theory could explain the difference. Also deviations from geodetic precession (6 arcsec/year) and a Frame-Dragging Precession (0.039 arcsec/year) from Gravity Probe B Satellite experiments appear to support General Relativity and its four-dimensional space. But the effects observed are very small. The LIGO experimental setup, a Michelson-Interferometer for observation of gravitation waves, in 2015 detected a transient change of length of the order of one atomic diameter in form of half a dozen irregular maxima lasting together 2 tenth of a second. Are such tests a proof of space-time and gravitation waves or are other explanations imaginable?

The Dynamic Energy approach explains gravitation as information image of matter, aiming at decreasing and minimizing energy per state. It does that when interacting with matter and guides it like a remote-control system in an orbit subject to least action. This is different from the far-reaching action of Newton’s gravitation and the near field action of gravitation in Relativity Theory. Already this is an interesting result, because remote control works technically and is commonly applied in steering drones.

When a travelling photon, particle and wave mediated via information on matter, is interacting with gravitation (information), there will be an effect of information acting on and changing due to additional information. There will be definitively an effect. This way deflection of light by heavy masses, the gravitational redshift, and gravitational lensing should in principle be explainable. It is also remarkable, that in form of remote control, using information (gravitation) on the spot to guide objects, irreversible nature applies a technology which our civilization has witnessed to be working. The open question remains, how natural objects can implement the provided information, when responding to gravitation. It should be recalled, that the Dynamic Energy theory is considering elementary particles as self-organized systems, comparable to virions, viruses decoupled from energy supply and not characterizable as “living” organisms [

The situation in challenging General Relativity is more complicated with phenomena interpreted as space-time properties. However, they are very small and there is also the possibility to find explanations on the basis of the energy driven Time Arrow approach. Here again gravitation fields are fields expressing and mediating information. Information has an energy content and energy can generate gravitation. Information fields can therefore interact with masses and can be distorted through their presence. This could account for some of the space related effects identified with General Relativity theory. A Frame-Dragging effect (Lense-Thirring effect), for example, should also be expected with an information (gravitation) cloud around a rotating mass. Significant efforts have been developed (especially via String-Theory and Supergravitation-Theory) to introduce quantization of gravity into General Relativity. They failed and Dynamic Energy theory can comment on that from its point of view: The function of information on matter during the dynamic particle-wave duality can be compared to that of a technical analogue-to-digital converter. Such a converter involves an algorithmic function which performs quantization of the analogue signal and is called a “quantizer”. Information on matter, mediating the dynamic particle-wave duality (

Because of the overwhelming experimental evidence claimed for Relativity Theory, criticism is not any more accepted by established journals. However, up to now critics could not present a reasonable alternative theory for explaining the always constant light velocity, gravitation, inertia, time behaviour and space properties. The Dynamic Energy model does this and claims in addition the potential of eliminating paradoxes and irrationalities of General Relativity. It also entirely naturally provides the link between quantum behaviour and cosmological function, and introduces, for the first time, the concept and mechanistic creativity of information technology into fundamental physical mechanisms. Our industrial civilization experiences the amazing potential of information technology, which is based on natural laws. Why should nature not apply them?

Here alternative explanations for experimental observations claimed to support Relativity Theory are sketched.

Time shifts of atomic clocks: Atomic clocks sent around the Earth or clocks in space show time dilation. It is interpreted to fully confirm Relativity Theory. These phenomena seen with atomic clocks in the sub-microsecond range occur with time intervals determined by atomic parameters only. According to the Time Arrow approach not the time changed, but a changed gravitation acting on the atomic clock modified the time lapses, determined by electronic transition in the atoms. Something similar would happen, if an ordinary pendulum clock would be taken up a mountain, where gravity, the acceleration imparted to objects, is lower. Its oscillation period inversely depends on the root of gravity and would become longer and correspondingly its oscillation frequency lower. This, however, does not mean that the time measured with the pendulum clock has changed. Just the scale used for measuring changes, the oscillations of the pendulum clock, experienced an alteration in the parameters controlling them. One would have to recalibrate the clock.

The Time Arrow approach explained quantization in atoms as consequence of minimization of information on matter [

Diversion of light by gravitation

Gravitation, being interpreted as information on matter, will have an effect on the trajectory of light, which is equally controlled and mediated by information on matter. A quantitative theory will be able to deal with this phenomenon, during which information enforces a minimisation of energy per state towards an implementation of the principle of least action in presence of additional information from outside. When gravitation (information) becomes strong enough, light will be visibly deviated and, in the case of a Black Hole environment, prevented from escaping. One is dealing with the effect of a “remote control” on elementary particles via information.

Increase of weight with increasing velocity

The Dynamic Energy approach explains elementary particles and matter as self-organized energy [

The formula E = mc^{2}

The famous relationship E = m c 2 derived from Einstein’s theory of relativity describes the energy of a mass m at zero velocity. It is considered synonym with Relativity Theory and any counter theory will have to deal with this situation. It is therefore important to learn that the derivation of this formula was not really based on logical considerations, but was already anticipated in the derivation of the result (see [^{2}, which, in this simple form, accounts for the appropriate dimensions.

Gravitation singularities are information singularities

Gravitational singularities are locations within space-time, characterized by infinitely growing gravitation and undefined space-time properties. Dynamic Energy theory explains gravitation as information on matter with the task to decrease energy per state and thereby to reduce information contained in free energy. Such a developing singularity, called a Black Hole, is thus an extremely dynamic information phenomenon aiming at disrupting matter and generating entropy. During the proceeding mechanism information (gravitation) is increasingly concentrated. As explained in a preceding publication [

Gravitational waves as information pulses

Within Dynamic Energy gravitation is explained as information on matter and information itself does not produce waves. But when self-organized, which is possible within the Dynamic Energy theory [

Dark matter means self-organized information on matter

Dark matter cannot be explained by the Theory of Relativity and when not found constitutes a problem for it. Dynamic Energy explains the dark matter phenomenon as self-organized information on matter (gravitation) [

Space-time distortions versus dynamics of information clouds

In the Dynamic Energy approach phenomena like the perihelion motion and curvature of space time could be reinterpreted as distortions and behaviour of information (gravitation) halos or information clouds around space objects. They have an energy content and may interact, for example, by responding to a rotating or otherwise moving mass. The behaviour of gravitation fields as fields of information and their mutual interaction need to be studied. How are information clouds behaving, which make up gravitation around masses?

Cosmological redshifts versus information handled “tired light”

Expanding radiation is, like an expanding gas subject to entropy production. The equivalence of the entropy formula applicable has already been used by Einstein in 1905 to justify the existence of light in form of particles (photons) [

How accurate can bent space gravitation be measured?

As scientific experience shows, a phenomenon such as gravitation is perfectly considered and implemented in natural processes. For this to work bent space gravity has to be registered with sufficient accuracy. Is this possible with a gravitation coined by a bent space, which has to be registered as an analogue signal? An indication of the accuracy in measuring gravity is provided by measurements (e. g. via torsion balances) of the gravity constant, which is deduced via the well-known formula relating gravitation forces to masses and their distance. Its presently recommended value is 6.67430 × 10^{−11} m^{3}kg^{−1}s^{−2} with an uncertainty of 2.2 × 10^{−5}, which is mostly due to the fact, that the mass of the earth is not well known. This requires measurements in the laboratory with correspondingly quite small test masses and associated inaccuracies. The expectation prevails that an accuracy of 6 digits can be reached for the gravity constant. On the Earth surface the variations in gravity itself, which in average is g = 9.81 ms^{−2}, due to latitude amount to +/−0.03, due to local geological variations to +/−0.0006, and due to tides to +/−0.000003 [

The role of self-organization

Every self-organization requires a directed time which provides a “before” and an “after”. A clock time does not provide that, because it only represents a scale, provided by oscillation phenomena, for measuring change. The Dynamic Energy approach, however, provides an energy driven time arrow which readily supports self-organization of matter and information (which has an energy content). The time orientation may be enforced by information loss accompanying energy processes from usable to unusable energy. Time is the loss of information on the past. This way, and because of the existence of a directed time, the complex space structures seen in the universe or in the structural complexity of life can readily be understood and explained. Such a creativity of the universe would not be possible within the time-neutral approach. Here daring mathematical procedures had to be applied to justify time orientation for self-organization (e. g. symmetry breaking). In practice, relevant disciplines, dealing with feedback and self-organization, e.g. control theory, presuppose a functioning of feedback processes, even though time neutrality and time as an illusion should not permit it.

The “Big Bang universe” of time-neutrality versus the “Self-Image universe” of irreversibility

The Big Bang universe (_{1} to I_{5} in

The Dynamic Energy approach for understanding the universe emphasizes the importance of information mediating between concentrated and distributed, chaotic energy. Such a mechanism applies for the particle-wave duality and is, since gravitation (information) dominates space, also expected to apply for the entire universe. A terminal, worn-out universe with a high entropy content will consequently be reconverted, by set aside information, into the free energy rich initial, original universe (

extent, be understood as entropic energy losses (discussed above), most evidence for a Big Bang scenario can be interpreted differently and in support of the Self-Image universe [

But the Self-Image universe has additional striking properties. Because of its directionality (due to feedback-coupled mechanisms as shown for cybernetic systems [

For the first time, and based on reasonable starting assumptions (fundamental irreversibility in nature) a rational counter theory is proposed, which challenges the space-time understanding of the universe.

The “energy-driven Time Arrow” approach towards understanding a fundamentally irreversible universe, as an alternative to the established time-neutral one, which is shaped by General Relativity theory, is faced with a complex challenge. On one hand there is the claim that Relativity theory has passed every test. On the other hand the quest for fundamental irreversibility and an energy driven time has opened a very promising path: it eliminates paradoxes in quantum physics and has given straightforward explanations for gravitation (and inertia) and the absolute light velocity, without the need to introduce them as property of empty space. They are implemented on quantum level so that also the link with processes in the universe is automatically given. Gravitation turned out to be information on matter with the aim of decreasing the presence of energy per state. This yielded an explanation of gravitational forces in terms of a remote control of masses, distinct from Newton’s long-distance action of gravitation forces and the close distance action of gravitation in General Relativity. Due to the orientation of the energy driven Time Arrow, a “before” and an “after” are readily given and consequently the route to self-organization is entirely open. It is open for energy, which self-organizes to elementary particles, for matter, which self-organizes to galaxies and life, and for information (which contains energy which is related to mass) which self-organizes to a higher hierarchy of information processing [

When information on matter (gravitation) self-organizes in the inorganic environment of space, it moves up into a higher hierarchy. Then it also increases its order, or the information it contains. It may structure itself, with areas of high gravitation near others of low or no gravitation. The gravitational effect exerted becomes much stronger. The additional energy required for this supergravity comes from the self-organization of gravity, which demands a sustaining flow of energy. In any case, the supergravity proposed here, as self-organized information, does not require any dark matter. This dark matter has been searched for during four decades now. The complex experiments with the liquid Xenon probe in the Gran Sasso mountain in Italy were negative. The Chinese Panda-X-II experiments and the Swiss experiments with ultracold neutrons were also unsuccessful. The time arrow as a trace of energy does not need dark matter. Its effect is due to a dynamic self-organization property of gravitation, information about matter, which may regulate and dominate our universe in other respects as well.

Another thrust of the Dynamic Energy approach is access to irreversible thermodynamics of matter which the time arrow facilitates. The recognized limiting entropy law is “maximum entropy turnover within the constraints of the system” [

However, time-neutral physics and the space-time world of General Relativity are well established [^{54}. Second, important “demonstrations” of General Relativity have to be explained differently. As discussed above, the time dilation registered with travelling atomic clocks is not considered a change of time flow but simply to be the influence, which a change in gravitation is exerting on electronic states in the atoms, controlling the time lapses induced by electronic transitions in atomic clocks. It is well known that the Standard Model of elementary particles, which is based on time-neutrality, cannot explain gravitation at all. The “Dynamic Energy” approach, which considers matter as self-organized energy, can do it: particles exist and react as self-organized mechanisms. They grow and change during energy turnover like a hurricane. This permits also that accelerated particles increase their mass [

The Self-Image universe drawn by the Dynamic Energy theory is recreated from a worn-out universe by set aside information on matter and can develop successive activity periods (

“Nature is the self-realization of energy over the time arrow”.

Due to its fundamental irreversibility, energy can self-organize to elementary particles and to matter [

The paradigm of time neutrality and Relativity Theory has, in contrast, sketched a universe which starts with energy from nothing in a Big Bang explosion. It involves a (bizarre) expansion of empty space and recognizes an evolution, which functions by pure chance and natural selection. This concept of evolution is characterized by no aim, cannot explain its obvious thrust and is unable to explain consciousness and spirit. The chaotically starting and dramatically expanding universe consumes its energy resources and is finally heading towards a cold death in infinite expansion. Mostly puzzling is the fact, that such a highly dynamic universe was constructed starting from assumed time-neutral particles and natural laws. Critically seen it does not explain the dynamics it created. Such a concept does not allow relevant philosophical questions either.

The new vision of the universe, the Self-Image universe (

The Dynamic Energy approach claims that the Time-Neutrality paradigm, applied to highly dynamic processes, is largely responsible for relevant paradoxes and finally also was responsible for the rise of Relativity Theory based on clock time, which has no relation to energetic processes. How the basic assumptions of the time-neutrality paradigm led to well-known, presently still tolerated, paradoxes is analysed in

Time-neutrality and an energy which is just a scalar without any relation to change is seen as the reason why the dynamic nature of the principle of least

action and thus fundamental irreversibility was not understood [

The energy driven Time Arrow approach thus also provides, in

The Dynamic Energy theory which can be derived from a dynamic interpretation of the principle of least action [

The above given alternative interpretations of experiments, that successfully seem to support Relativity Theory, show that they do not contradict a fundamentally irreversible nature. Alternative, and in addition logic and simpler interpretations in line with Dynamic Energy theory are possible. No experiment has up to now been communicated that unambiguously shows that a natural phenomenon can be inverted in time without additional changes in the environment. Such efforts should be continued as an attempt to support or challenge Relativity Theory based on the time-neutrality paradigm. Also, answers should be found to questions on relativity as sketched in

In support of such a step it should be explained how measurement values for gravitation covering 54 orders of magnitude (between two neutrons and two one kilogram weights) can be expressed and registered in form of a bent space around spherical material objects. For the expected analogue signals expressing gravitation based on a bent space this appears to be impossible. Only 4 orders of magnitude (0.01% of full value) can reliably be measured with such systems. On the other hand, gravity measurements with an accuracy of 2 parts per billion have been achieved, as explained above (compare [^{−5} parts of one degree per year [

Can the bent space of General Relativity around Earth be registered within an accuracy of 5 to 9 digits (decimal positions)? In order to do that the instrument (or the physical object concerned) must be able to retrieve or register the corresponding information from the curved structure of space, which is expected to be present and active during measurement (or interaction). The discussed measurable gravity values already indicate a two to six orders of magnitude higher accuracy than expected for a measurement of an analogue signal which a bent space is able to provide on the basis of practical experience: the error of an analogue instrument due to gain is generally estimated to be 0.01% or three digits behind the comma, to which an offset error has to be added (e.g. [

With a gravitation in form of information in numbers, on the other hand, registering and handling such a signal over many orders of magnitude, and providing such a sensitivity on any single location where gravitation exists would work. Measurement of gravitation on one location only is sufficient for obtaining the necessary information, as actually possible in reality. The measurement is then dealing with an information cloud around matter, in which information on matter, gravity, is present, properly distributed and available and active in form of numerical data. Can information better explain gravity? In a given gravitational field, all bodies, whether light as a feather or heavy as a hammer, are subjected to the same acceleration. They approach the ground at the same speed, provided that no air is present to exert varying amounts of friction. Such an experiment was actually carried out successfully in 1971 by Apollo 15 astronaut David Scott on the moon. One can rationally understand that the information image imposes such a behaviour, an equally strong acceleration, on masses. The information given in an identical gravitational field for a reduction of energy per state is simply the same for differently shaped objects. So also the observed acceleration is identical for a feather and a hammer. The principle, according to which acceleration does not depend on mass, shape or density of an object, is thus comprehensible, logically understandable. It is triggered by the same implemented information. However, the force experienced by unequal objects is different, since the triggered acceleration must be multiplied by the corresponding mass.

How nature is actually handling information on matter in the form of gravitation needs, of course, to be explored. It may be a demanding task, but a realistic one, compared to the claim of Relativity Theory that curving of empty space is doing that. Elementary particles are already showing gravity properties so that the phenomenon must originate in them as derived by Dynamic Energy considerations. One knows what to search for, and what questions to ask. Experience within our evolving information age may provide more and more technical clues.

Such a measurement challenge, the distinction between analogue space-time signals on gravity and digital Dynamic Energy signals of gravity is proposed here as a falsification criterion (according to Popper [

The Franciscan monk William of Ockham proposed in the 14th century that “no more causes for natural events should be allowed than absolutely necessary for their explanation”. This rule of thumb for scientists, also known as Ockham’s razor, would clearly favour the Dynamic Energy approach claiming a fundamentally irreversible nature, presented here, over the irrational theories, including General Relativity theory, for various natural phenomena, based on time neutrality and criticised in this paper.

Dynamic Energy pictures a much simpler, rational and more attractive universe. It is a promising alternative, because truth regularity proved to be simpler and philosophically more rewarding. It especially promises to allow penetrating deeper into natural contexts. There will never be a reasonable scientific understanding of bent empty space gravity of Relativity Theory, but the information technology expected behind the information-based gravity of the Time arrow approach promises a deep penetration into the secrets of the universe. The proposed new truth is that nature is fundamentally irreversible, that real time flow is the loss of information on the past, that the two Relativity Theories design a fictional universe by assuming that gravity and always constant light velocity are properties of empty space. Existing nature is, in principle, much simpler than presently seen and it is rational, while able to creatively evolve sophisticated structured systems including galactic objects, life and spirit within a universe dominated by information.

The author declares no conflicts of interest regarding the publication of this paper.

Tributsch, H. (2019) Space-Time Universe versus Energy Driven Time Arrow Universe: Time-Neutrality Confronted with Fundamental Irreversibility. Journal of Modern Physics, 10, 1029-1064. https://doi.org/10.4236/jmp.2019.108068