^{1}

^{*}

^{2}

This paper uses the results of the latest Unified Field Theory (UFT) and the experimental results of the recent experiments of gravitational wave to study the configuration of a black hole. We conclude that a black hole has no singularity state. Instead, particles in a black hole form a stable system. Topologically, octahedron particles form sphere with two poles. A black hole always releases energy at the poles. If a black hole has an accretion disk, the particles from disk will wrap around the black hole, twist upwards, accelerated by out-going black hole energy at the poles, and ejected out at the top of a pole to form a black hole jet. The predictions made in the paper provide valuable insight regarding the inner workings of the black hole. We hope that our work can help future studies regarding gravitational waves, black hole, and dark energy.

Unified Field Theory (UFT) [

In recent test results [

For the twin black holes, the frequency is doubled: 1042 Hz.

The actual test result [

Assume that the rotation speed is:

and:

The frequency is changed to:

According to the test result, the twin black hole failed to maintain the orbit. In 4 cycles, they collided.

When two black holes merge, the circulation speed is:

When particles circling around the black hole:

or:

The structural formula [

In order to resist gravitational pressure in a black hole shell, the particle has to be stable. When the mass of the particle in unit of electron mass is divisible by strong interaction energy 137 instead of (2 × 3 × 5)^{2}, the particle is perfectly in resonance with strong force and most stable (in unit of electron mass). The known particles do not have such characteristics. Since the know particles have three axes in

A stable strong interacted axis is neutral. Since component with mass of 137 is charged. To make it both divisible and neutral, X can be:

2n × 137^{(2m−1)} or n × 137^{(2m)}

n, m = 1, 2, 3, …

3 × X:

3 × (2n × 137^{(2m−1)}) or 3 × (n × 137^{(2m)})

i.e.:

…

3 × (4 × 137^{2})

3 × (3 × 137^{2})

3 × (2 × 137^{2})

3 × (137^{2})

3 × (128 × 137)

3 × (64 × 137)

3 × (32 × 137)

3 × (16 × 137)

3 × (8 × 137)

3 × (4 × 137)

3 × (2 × 137)

Any structure in following formula (in unit of electron mass):

Can silently interact with any structure in above formula without releasing energy:

Three different particles:

The interaction without releasing energy leads to the “dark” character of the above structures.

When the neighboring particles share the same structure, they are in resonance. The neighbor particles in a shell should have the same structure.

The particles do not bind together with strong force. They form perfect crystal layers with no friction between layers. In

When a particle moves down toward the core of a black hole, the gravity accelerates the particle. It will collide with a particle and stops. If one of the axis of the octahedron dark particle is parallel to the axis of the black hole, the collision does not cause particles to spin. Therefore, one of the axis of the octahedron dark particle is parallel to the axis of the black hole.

Two neighboring particles vertical to the black hole axis are colliding due to the heat. For the same reason, their axes are lined up, one axis along Longitude, and one axis along Latitude.

We predict that the movements vertical to the axis are heat movements. A simple movement can be in form of vibration along axes. Such heat vibration vertical to the axis create spheres. The heat vibration generates pressure in the spheres and cancels out gravity introduced pressure within a sphere.

A stable black hole has no pressure between shells in the stable areas.

The internal collision of the sphere at the equator should cancel out the gravity of half sphere.

Assume that:

D: density.

r_{p}: 0.84 × 10^{−16} m, radius of particle.

r: radius of sphere.

Gravity:

Collision:

or:

If the Sun becomes a black hole, it will be the smallest black hole ever found. The radius:

The smallest radius is the radius of proton, or:

V reaches to the maximum speed:

Black holes are very cold indeed.

The spheres in the black hole create a stable system. Such system stops further crashing from happening and there will be no path to reach the event horizon. Instead, the escape energy is one half of the inertia energy, a stable black hole follows:

The structures:

are octahedron shaped.

Topologically, octahedron particle formed sphere

The Longitude effects are less in the areas close to two poles. The particles are mainly aligned with the axis of the black hole and the other two axes are aligned by external forces and form a perfect crystal.

The areas further away from the poles have disproportional crystal dislocations that lead to pressures between the shells and form unstable fault structures shaped as squared cylinders/cones. The pressure causes movements along the fault surface. The energy will be released continuously from fault surface as particles crash down toward the core of black hole along the fault surface.

For a single black hole [

In black hole system [

Due to the gravity, photons release from the deep fault surface are red shifted, while photons from the upper level of black hole are blue (less red shifted).

When there is an accretion disk, circling matter will touch the surface of black hole, where the vibration movements along a longitude convert the circling matter into layers of spheres wrapping around the black hole. The newly formed spheres twist upwards. When these particles reach a pole, they are accelerated by out-going black hole energy at the poles. The particles are continuously pulled into the new sphere from the rotating disk and ejected at the top of pole. This dynamic process forms a black hole jet

We predict that:

1) A black hole is composed of dark particles structured as follows:

2) The black hole radius is

3) A black hole has a stable octahedron dark particle formed cold spheres. There is no pressure between the spheres;

4) These octahedron dark particles formed spheres have two poles and fault cones which emit black hole energy;

5) Particles circling a black hole wrap around the black hole and form spheres which are ejected out at the poles to form black hole jets.

Additional studies are warranted regarding fault cones, black hole jet, and interactions between two neighboring black holes.

Cao, Z.L. and Cao, H.G. (2016) Gravitational Wave and Trans- parent Crystal Black Hole. Open Access Li- brary Journal, 3: e3038. http://dx.doi.org/10.4236/oalib.1103038