^{1}

^{*}

^{2}

This paper proposes about a powerful control mechanism of UPQC (Unified Power Quality Conditioner) work on voltage source inverter which can effectively compensate source current harmonics and also mitigate all voltage collapse such as dip, swell, voltage unbalances and harmonics. The consolidation of series and parallel active power filters sharing mutual DC bus capacitor forms UPQC. PI (Proportional Integral) controller is mainly used in order to maintain continual DC voltage along with the hysteresis current controller. The parallel and series power filters were designed using 3-phase voltage source inverter. The reference signals for shunt and series active power filters were obtained by Synchronous Reference Frame (SRF) theory and Power Reactive (PQ) theory respectively. By using these theories, reference signals were obtained which was fed to the controllers for generating switching pulses for parallel and series active filters. The UPQC dynamic performance is obtained through testing terms like the compensation of voltage, current harmonics and all voltage distortion associated with 3-phase 3-wire power system which is simulated using MATLAB-Simulink software.

Due to increase in use of power electronics devices in industrial area as well as in customer loads which uses non-linear loads, non-linear loads at utility cause large supply of reactive power which pollutes the source side equipment largely. The main requirement of mitigation equipment is that they should be fast and dynamic response helps to reduce the source side harmonics. Due to increasing use of non-linear loads, nowadays active filters are replacing the olden days mitigation methods like switching capacitor and thyristor controlled inductor coupled with passive filters [

The Unified Power Quality Conditioner (UPQC) is a solution to mitigate current and voltage issues; it is the combined design of shunt and series active power filters coupled through mutual DC linkage capacitor which rejects the instabilities spread from the supply side and the interconnected supplementary loads. In general, the task of UPQC, parallel active filter estimates the reimbursing current harmonics called mitigating current harmonics and helps in VAR generation using the control circuitry [

From the literature review of various works done so far, describing the balanced or unbalanced source conditions by voltage either dip or rise. In this work, different kind of voltage based PQ issues such as sag, swell, transients, interruption and current harmonics are simultaneously mitigated under balanced and unbalanced source conditions as well as linear and non-linear loading conditions.

This article proposes about three-phase three-wire system having voltage source inverter using streamlined control method. The series active filter is maintaining load voltage, dip/swell, harmonics and flickers. The voltage on DC capacitor is maintained constant by parallel active filters. UPQC performances are simulated and verified using MATLAB tool.

The Right Shunt type Unified Power Quality Conditioner (UPQC) with voltage source inverter is acted as a filter and its modelling is deliberated in Section 2. The proposed control method based on hysteresis controller for series and parallel active filter is explained in Section 3. A Simulink model and its detailed result and discussion of the projected control scheme are described in Section4 for two different source conditions. The conclusion of the work is summarized in Section 5.

This system proposes about the 3-phase source coupled to a power system feeding non-linear load.

From olden days, several inverters have been used due to different applications. Voltage Source inverters have wide applications which include drive control strategy, STATCOM, HVDC transmission, and more important is that the interfacing of renewable energy resources. In Power Quality improvement voltage source topology was widely used in SVC’s, UPQC’s, etc. due fast and dynamic response characteristics [

-Produce pure sinusoidal current waveforms by reducing unwanted harmonics.

-Lessens the overvoltage produce by refection on extended cable.

-Ripple is two times normal the switching frequency in the first set.

Conventional control topology for parallel active filter controlled by the hysteresis scheme in voltage source inverter is shown in

Three phase voltage is given as:

where V is the line voltage measured across three phases a, b, c correspondingly. Hysteresis Current Controller is helping to identify the mitigated reference current. Then the inside and outside of hysteresis comparator are stated as:

Effective switching pulses are used to generate three different voltages on the AC side of the active filter. Upper and lower voltages existing in the negative and positive phase voltages of the inverter acted as an active filter. In optimistic side voltage produced on two levels, 0 and

where

Logic control is used in controlling the both Active Power Filters for providing gate signals. The Difference between the injected and reference current gives a reference modulation waveform. The inverter control is determined by two strategies [_{im}_{1} and V_{im}_{2}:

- If E_{c} ³ 1 at that time V_{im}_{1} = 1

- If E_{c} ³ 1 at that time V_{im}_{1} = 0

- If E_{c} ³ 1 at that time V_{im}_{2} = 0

- If E_{c} ³ 1 at that time V_{im}_{2} = 1

where

The control approach for generation of the reference signal is based upon error signal generation and time delay basis for effective compensation of UPQC. The time delay and reference current generation mainly to compensate distortions, unbalance voltages and current during any fault conditions. The proposed control approach is most suitable and effective for mitigating current and voltages during undesirable conditions.The control strategy for parallel and series active filters are shown in

The main aim of this control approach is to compensate current harmonics which usually based upon the synchronous reference frame detection method [_{la}, i_{lb}, i_{lc}, are converted into 3 phase (a,b,c) reference frame and then to two phase (

By means of phase locked loop (PLL), that make possible for generations of _{as}, V_{bs}, and V_{cs}.

The

The i_{d} and i_{q} current are transformed into DC components and using a low pass filter harmonic components are obtained:

The equation for the reference current

The abc reference frame is given as:

Finally, the compensation currents are obtained as;

In order to mitigate, initially the inverter losses are reduced and then normalize the DC link voltages using a PI voltage controller [

For generating reference frame for series active filter depending upon the PQ theory, we assume phase voltages are symmetric and distorted: [

The U_{n} and

Equation (10) is converted into reference frame:

The fundamental 3-phase current is framed as:

Equation (10) is transformed to (

The DC components are obtained by passing P and Q in low pass filter (LPF), then

From the above equation the transformation is made as:

The DC mechanisms of p and q as:

The fundamental reference frame is given as:

The three-phase fundamental voltages are given as:

Here both shunt and series power filters are put into operation at different time instants. Considering nonlinear load for simulation source parameters considered are as follows. Input source voltages: V_{a} = 230 V, V_{b} = 230 V, V_{c} = 230 V. The load element and filters with VSC has been built using MATLAB /SIMULINK. The following observations are drawn from the simulation outcomes. The control algorithm provides reactive and harmonic power compensation.

Here balanced source voltage is considered and after compensation balanced source current is prescribed in following results.

At time instant for t = 0 to 0.05 sec system is working without any issues, which does not require any compensation and after t = 0.05 voltage dip is introduced, in this time period series filter comes into operation for compensating voltage harmonics. The voltage dip occurs till 0.1 sec, the system is again at normal working condition. Then a short time interruption is led which occur from t = 0.14 to 0.15 sec, following the interruption

voltage swell is hosted from t = 0.15 to 0.18 sec at that time shunt filter comes into operation for compensating harmonics due rise in voltage, then the system voltage come back to its normal working condition.

In _{s} = 253 volt) in voltage till 0.18 sec. So reference voltage generator generates the required voltage in the opposite direction for mitigation.

Three phase actual (generated) error voltage which is being added to the system error voltage to obtain the compensated source voltage of 230 volts for an entire operating period, it is shown in

In

The supply current before compensation is non-sinusoidal due to the non-linear load connected to the system which is shown in

The generated reference current for compensation using hysteresis controller is exactly follows the reference filter current shown in

The generated reference current

There is a small disturbance in time t = 0.05, 0.1, 0.14 and 0.15 respectively, which is due the operation of controller during the mitigation process of dip, interruption and swell.

Considering same simulation load parameters, but having unbalanced sources are as follows. Input source voltages: V_{a} = 230 V, V_{b} = 220 V, V_{c} = 230 V.

From t = 0.05 sec voltage dip is introduced, in this time period series filter comes into operation for compensating voltage harmonics. Then a short time interruption is led which occur from t = 0.14 to 0.15 sec, following the interruption voltage swell is hosted from t = 0.15 to 0.18 sec at that time shunt filter comes into operation for compensating harmonics due rise in voltage, then the system voltage come back to its normal working condition.

Here unbalanced source voltage is considered and after compensation balanced source current is prescribed in following results.

Three phase actual (generated) error voltage shown in

load connected to the system. The actual filter current generated by the synchronous reference current generator using hysteresis controller for the connected non-linear load is shown in

The above tasks are analyzed by using MATLAB Simulink for two different operating conditions such a balanced and unbalanced source voltage conditions. The amount of harmonic distortion reduction is up to the benchmark level and its results are tabulated in

For the improvement of power quality issues in the source current due to harmonics delivered by the nonlinear loads, a new UPQC configuration is constructed. The voltage source inverter topology is proposed to mitigate the issues by acting as a filter. The control approach is based on the power instantaneous method for series filter and synchronous reference frame topology for parallel filter is proposed. UPQC configuration is proposed and validated using MATLAB/SIMULINK software. UPQC configuration is satisfactory observed for different power quality issues such as current harmonics mitigation, voltage sag and voltage swell and unbalance compensation. Anyhow, in the proposed work the performance of UPQC has been agreed for various power quality mitigations like dip, swell and interruption under balanced and unbalanced condition of the considered nonlinear load. The improvement of THD in the source current is improved from 30.59% to 0.83% for balanced source voltage and unbalanced source voltage THD value is improved from 42.05% to 0.92%. Thus the prospective

S.No | Total Harmonic Compensation | Before Compensation | After Compensation |
---|---|---|---|

1 | Balanced Source Voltage | 30.59 % | 0.83% |

2 | Unbalanced Source Voltage | 42.05% | 0.92% |

performance of the UPQC control approach could be replaced by intelligent control strategy and it is useful for potential usage of UPQC under many circumstances.

Parthasarathy Pugazhendiran,Jeevarathinam Baskaran, (2016) Realization of Unified Power Quality Conditioner for Mitigating All Voltage Collapse Issues. Circuits and Systems,07,779-793. doi: 10.4236/cs.2016.76067