^{1}

^{*}

^{2}

As a result of investigating analytically and experimentally the interchangeability between thermal, electrical and magnetic energies, it is proved in the presented study that the electric and magnetic energies have an equivalent grade and nature as the thermal energy. So, the natural flow of electric charges and magnetic flux is associated also by increase of entropy of universe, similar to the heat, and has the same nature of waves as the electromagnetic heat radiation. Casting the Maxwell’s wave equation into an energy frame of reference that replaces the time in wave equations by entropy, it is possible to represent the electric charges and magnetic flux as electromagnetic waves of electric and magnetic potentials. Such results lead to modify exclusively the definition of the physical nature of the electric charge and magnetic flux which is unavailable in literature.

Generally, flows in thermodynamic systems are driven by forces; i.e. flows and forces occur in conjugate pairs. That is, heat flow is driven by differences in temperature between the system and its surroundings, volume flow by differences in pressure, electric charge flow by differences in electrical potential, magnetic flux is a flow driven by magnetic potential, and mass flow by differences in concentration [

The second law of thermodynamics provides a rule that describes the direction of change in a system in the absence of external forces. It depends on natural evidence that heat flows from warm objects to cold objects, that objects fall downward in a gravity field, that electric current flows from high potential to low potential, the magnetic flux emerges from magnets of high magnetic potential to iron rods of zero magnetic potential and solutes diffuse from regions of high concentration into regions of low concentration. So, the second law is a rule which captures these facts in a remarkably concise way [

In the following analysis, the reversible change of heat into electric current will be studied as implemented through the definition of thermoelectric effects [

Thermoelectricity is defined as the direct conversion of heat into electric energy, or vice versa [

The equivalence of electric energy and thermal energy as concluded from the definition of the thermoelectric effect is also proved by the applications of the Seebeck effect in thermoelectric generators and of Peltier effect in thermoelectric refrigerators [

A simple experiment had been elaborated to prove interchangeability of heat and magnetic (or mechanical) energy, and the equivalence of the grades of the thermal energy, or heat, and the magnetic energy.

the magnetocaloric effect which is defined as the heating or cooling of a magnetic material due to the application of a magnetic field [

Reviewing Faraday’s experiment of magnetic induction, it is possible to prove the similarity of the natures of the flow of electric current and the flow of magnetic flux.

Available literature defines the electric current as a flow of electrons and defines the magnetic flux as the quantity of magnetic field that penetrates an area at right angles [

The previously proved interchangeabilities of heat, electric current and magnetic flux prove the equivalence of their grades and the similarity of their natures. However, the second law defines a new state function, the entropy that may describe the irreversibilities of heat flow when dealing with the entropy of the universe rather than the entropy of a system as a state function. For reversible processes the heat flow is expressed as the product of temperature, as the force that derives the heat flow, times the increase of the entropy of the system associated by the heat flow [

Equation (4) is used to represent the heat added to a system T-s property diagram seen in

However, the total changes in entropy (system plus surroundings) for reversible process where the same heat is transferred through infinitesimally small difference [

So, the total change in entropy for a reversible process is zero as the entropy is a state function. However, for real processes where the temperature of the system should be higher than the temperature of surroundings [

So, we get

So, in any physical process, the entropy S for an isolated system never decreases; that is, we have

Reviewing the electric energy, we find also that the current will flow from high potential to low potential.

According to the similarity of heat, electric energy and magnetic energy, such principle of increase of entropy should include also the increase of entropy of the universe due to transfer of all these energies. So, we should the following relation between the electrical potential of the system “

Accordingly; there is an increase of entropy of the universe associated by the flow of electric current and, by similarity, of magnetic flux that leads also to apply Equation (7) [

So, the second law should consider the energies similar to the heat as the flow of electric charges and magnetic flux as sources of similar irreversibilities. In other words, the flow of electric charge and magnetic flux should be associated also by an increase of entropy of a system and expressed by a similar equation as (4). Hence, the reversible transfer of electric current should be expressed as the product of the electric potential times the increase of entropy associated by the flow of electric charge and the magnetic flux as the product of the magnetic potential times the increase of entropy associated by the flow of magnetic flux according to the following equations:

Equations (9) and (10) were the foundations that were previously introduced to find a fundamental energy equation that embraces the flow of heat, electric current and magnetic flux which was applied in many citations in the following form [

According to Equations (4), (9), (10), and (11) entropy can be defined as a measure of energizing, or disordering, the molecules of a system by thermal, electric or magnetic energies. The postulate that the flow of electric current is associated by flow of entropy was early discovered by Einstein and his colleagues [

However, relying on the definition of entropy of a system in terms of its statistical concept according to Ludwig Boltzmann as follows [

^{−23},

modynamics from the statistical behavior of a large number of molecules obeying the simple laws of mechanics, namely the conservation of momentum and energy. Such analysis was given the name statistical mechanics [

The representation of energy, or heat, as flow of electromagnetic waves is defined mathematically by Maxwell’s equations. However, it is expressed in literature in terms of flow of electric energy wave in an E-t plane, and magnetic energy wave in an H-t plane as follows [

where c is the speed of light in the medium, in vacuum c = c_{0} = 299,792,458 meters per second. Replacing the time in the previous Maxwell’s equations by entropy, Maxwell’s equations may be represented in an energy frame of reference composed of the coordinates E-H-s as seen in

Replacement of time by entropy sustains Eddington argument of the arrow of time as indication of the direction of progressive increase of random elements in nature and his lengthy conclusion that such randomness is a property of entropy alone which is also a measure of randomness in time [

According to the indicated representation of the electromagnetic waves in the introduced coordinate system, the bounded or shaded areas by the wave lines in the E-s and H-s planes of

Accordingly, it is possible to calculate the energy flow per unit time as follows:

“v” is the frequency of the electromagnetic wave, or the number of waves per unit time. This means that the energy quantization is stemmed mainly from its nature as a wave. Such understanding is a direct conclusion of representing the flow of electromagnetic waves in the introduced energy frame of reference.

The previously proved interchangeabilities between thermal energy and electric energy, thermal energy and magnetic energy and between electric energy and magnetic energy prove that the heat flux, electric current and magnetic flux should have the same nature. So, if the primary form of heat flux is a flow of thermal radiation as electromagnetic waves of thermal potential, we may postulate the electric current is a flow of electromagnetic waves of electric potential and the magnetic flux as electromagnetic waves of magnetic potential.

The representation of heat, as flow of electromagnetic waves, is defined mathematically by Maxwell’s equations and is represented graphically in

Equations (19) and (20) represent a solution of Maxwell’s electromagnetic wave equations of specific initial conditions that define the flow of electric charges as a flow of ionized electromagnetic waves which have a non-zero electric potential. Such solution can be represented graphically as seen in

Such definition of electric charge or current as electromagnetic waves of electric potential found plausible explanation of the discovered Tesla’s “Radiant Energy” or Tesla’s “Dark Waves” as normal transfer of electric current, of wave-nature, through air by the high electric potential of Tesla’s tower [

According to the discussed similarity of the natures of the flow of thermal radiation as defined by the modified Maxwell’s wave equation Equations (15) and (16) and the magnetic flux; the magnetic flux can be defined as a special solution of such equations by defining magnetic flux as flow of electromagnetic waves whose magnetic component oscillates initially around a specific positive or negative potential “

Such definition of the nature of magnetic flux as electromagnetic waves of magnetic potential found a plausible explanation of the MIT discovery of wireless power transmission by magnetic resonant coupling which was identified as “evanescent waves”. Such waves can be plausibly defined as wireless transfer of normal magnetic flux, of wave-nature, through air by the high potential of the discovered magnetic resonant coupling [

Reviewing the natural flow of electric charges from high electric potential to low potential and the natural flow of magnetic flux from high magnetic potential to low potential which are similar to the natural flow of heat from high temperature to low temperature, it is possible to prove in this study that transfer of electric charge and magnetic flux represent sources of irreversibility and should be considered as a source of increase of entropy of the universe similar to the transfer of heat. Such results help through a followed entropy approach in defining the nature of the electric charge as electromagnetic wave of electric potential and the nature of magnetic flux as electromagnetic waves of magnetic potential similar to the heat flux as electromagnetic waves of thermal potential. Such postulated natures of electric charge and magnetic flux find plausible explanations of the Tesla dark waves, the MIT evanescent waves, solves the duality confusion and find a simple universal system of units that solves the complexities of the SI system of units in the field of electrodynamics. It also explains the speed of flow of the electric charges that approaches the velocity of light.

Salama Abdelhady,Mohamed S. Abdelhady, (2015) An Entropy Approach to the Natures of the Electric Charge and Magnetic Flux. Journal of Electromagnetic Analysis and Applications,07,265-275. doi: 10.4236/jemaa.2015.711028