^{1}

^{*}

^{1}

^{*}

Prakash and Singh presented the shrinkage testimators under the invariant version of LINEX loss function for the scale parameter of an exponential distribution in presence Type-II censored data. In this paper, we extend this approach to gamma distribution, as Prakash and Singh’s paper is a special case of this paper. In fact, some shrinkage testimators for the scale parameter of a gamma distribution, when Type-II censored data are available, have been suggested under the LINEX loss function assuming the shape parameter is to be known. The comparisons of the proposed testimators have been made with improved estimator. All these estimators are compared empirically using Monte Carlo simulation.

In life-testing research, the most widely used life distribution is the Gamma with probability density function for any random variable x;

Let be the random samples of size n taken form the Gamma distribution. The parameter and are called the shape and scale parameter, respectively. It is crucial to have in-depth study of the (Classic and Bayes) estimate of the scale parameter of Gamma distribution because, in several cases, the distribution of the minimal sufficient statistics is Gamma (see Parsian and Kirmani [

Ferguson [

where c is the shape parameter and is any estimate of the parameter.

The LINEX loss function is convex and the shape of this loss function is determined by the value of c. The negative (positive) value of c gives more weight to overestimation (underestimation) and its magnitude reflects the degree of asymmetry. It is seen that, for c = 1, the function is quite asymmetric with overestimation being costlier than underestimation. If c < 0, it rises almost exponentially when the estimation error and almost linearly when. For small values of |c|, the LINEX loss function is almost symmetric and not far from squared error loss function.

Pandey [

In life-testing, fatigue failures and other kinds of destructive test situations, the observations usually occurred in an ordered manner such a way that the weakest items failed first and then the second one and so on. Let us suppose that n items are put on life test and terminate the experiment when r (< n) items have failed. If denote the first r observations having a common density function as given in (1.1) then the joint probability density function is given by

where

is a complete sufficient statistic of and distributed as gamma distribution with parameters. The maximum likelihood estimator (MLE) of is given by

and can easily show that is the minimum variance unbiased estimator (MVUE) of.

Roa and Srivastava [

and found the value of the constant

(say) which minimizes the risk of Y under the ILL. The minimum risk estimator is

with the minimum risk under ILL

for, see Prakash and Singh [

In the present paper, some shrinkage testimators for the scale parameter of a gamma distribution, when Type-II censored data are available, have been suggested under the ILL loss function assuming the shape parameter is to be known.

Following Thompson [

The value of the shrinkage factor near to the zero implies strong belief in the guess value and near to one implies a strong belief in the sample values. Several researchers have studied the performance of the shrinkage estimators and found that the shrinkage estimator performs better with respect to any usual estimator when the guess value is close to the parameter. This suggests that we may test the hypothesis against. A test statistic

is available for testing the hypothesis.

The loss for estimator under the ILL is defined as

where

and

.

The risk of the proposed shrinkage estimator under the ILL is given by

The value of (say), which minimizes the risk is thus obtained by solving the given equation

The value of depends upon the unknown parameter. Hence, an estimate of is obtained by replacing the parameter to its minimum variance unbiased estimator. Based on this, the proposed shrinkage testimator for the scale parameter is deﬁned as

where denotes the indicator of A, and. Here and are the values of the lower and upper

points of the chi-square distribution with degrees of freedom. The risk under the ILL for the shrinkage testimator is given by

where

, , , ,

and may be a function of. For, see Prakash and Singh [

Waikar, Schuurmann, and Raghunathan [

.

Therefore, the proposed shrinkage testimator based on is given by

The risk under the ILL for the shrinkage testimator is given by

where

.

For, see Prakash and Singh [

When is accepted,

.

If one is interested in taking smaller values of the shrinkage factor, he can take. The proposed shrinkage testimator is

where

;

it may be possible that the value of shrinkage factor is negative so positive is taken. Adke, Waikar, and Schuurmann [

where

.

For, see Prakash and Singh [

The minimum value of constant, obtained for the class, lies between zero and one. Hence, it may be a choice for the shrinkage factor. Thus, the proposed shrinkage testimator may be considered as

The risk of the proposed shrinkage testimator under ILL is given by

where

.

For, see Prakash and Singh [

The relative efficiency for;, with respect to the minimum risk improved estimator under the ILL is deﬁned as

The expression for the relative efficiency;, is the function of and. For the selected values of;;; and, the relative efficiencies have been calculated and presented in Tables 1-8. Only positive values of are considered because overestimation in mean life is more serious

than the underestimation.

From these tables it is observed that the shrinkage testimators perform better than the improved estimator for all considered values of and α. The testimators, and perform better than when. The testimators attain maximum efficiency at the point δ = 0.4 and others near to the point δ = 1.

For fixed c and level of signiﬁcance α, as the uncensored sample size r increases, the relative efficiency decreases in all considered values of δ for all the testimators.

For fixed r and α, when c increases the relative efficiency increases in all considered values of δ for all testimators.

It has been seen that as the level of significance α increases the relative efficiency increases in all considered values of δ for all testimators.

From these tables it is observed that the shrinkage testimators perform better than the improved estimator for all considered values of and α. The testimators, and perform better than when. The testimators attain maximum efficiency at the point and others near to the point.

For fixed and level of signiﬁcance α, as the uncensored sample size r increases, the relative efficiency decreases in the region for the testimator, and in the region for the testimators and, and also for testimator it decreases for all considered values of δ.

For fixed r and α, when c increases the relative efficiency increases in all considered values of δ for all testimators.

It has been seen that as the level of significance α increases the relative efficiency increases in and also in when, and decreases for when and for testimators, and, and for testimator it increases for all considered values of δ.

In this study, some shrinkage testimators (, , and) for the scale parameter of a gamma distribution, when type-II censored data are available, suggested that under the ILL loss function assuming the shape parameter was to be known. The comparisons of the proposed testimators made with improved estimator. The recommendations have been presented, based on the relative efﬁciency for all the shrinkage testimator. From the previous observations, the shrinkage testimators perform better than the improved estimator for all considered values of and α, and the testimators, and perform better than when. Since the shrinkage testimators always perform better than other shrinkage testimators if the gain in efﬁciency does not matter, therefore we strongly suggest using the shrinkage testimators for the scale parameter of a gamma distribution, when Type-II censored data are available, suggested under the ILL loss function.

The authors would like to thank the referee and the editor for a careful reading of the paper and for valuable comments which improved the presentation of the paper. The second author gratefully appreciates his wife, Dr. Saemeh Dehghan, who kindly helps the researcher in the study.