_{1}

^{*}

A van der Pol equation underlying state feedback control is investigated and the triple-zero bifurcation arises at the bifurcation point which is of codimension three singularity. By applying Schmidt-Lyapunov reduction method combined with center manifold analytical technique, the near approximating formal norm is derived at the triple-zero point. Hence after, as varying parameters continuously, the numerical simulation produces homoclinic bifurcation solutions appearing in system. In addition, the numerical simulation also exhibits the produced double-period limit cycle with chosen bifurcation parameters and the routes to chaos via period-doubling bifurcation are also verified.

Within the discipline of dynamical interests, the dynamics of van der Pol oscillator focused most attention since disparate sorts of complex dynamical phenomena appear in every field of scientific investigation [

Triple-zero point represents that the bifurcation of the related equilibrium solution has algebra multiple-3 and geometrical multiple-1 singularity. Generally system dynamical behavior with triple-zero bifurcation may be induced due to Hopf bifurcation and double zero bifurcation merging in the triple-zero point [

In this paper the dynamics of a general van der Pol oscillator with two commensurable time delay in state feedback control is discussed, and the corresponding system is listed as

x ¨ + ε ( x 2 − 1 ) x ˙ + x = ε k x ( t − τ ) + ε k x ( t − 2 τ ) − β x ˙ 2 + γ x 4 , x ∈ R (1.1)

With the background knowledge of delay differential equations, we know system (1.1) is the infinite dimensional system. It is defined on the continuous functional space C = C ′ ( [ − 2 τ ,0 ] , R 2 ) which equipped with the norm ‖ ϕ ‖ = sup θ ∈ [ − 2 τ ,0 ] | ϕ ( θ ) | . System (1.1) can experience the cascades of bifurcation behaviors to chaos phenomena. With free parameters ε , k , τ , the routes via period doubling bifurcation of period solutions to chaos are explored.

With the aids of parameter perturbation near triple-zero bifurcation point, the normal form of system (1.1) is analyzed by using dimension reduction method combined with center manifold analytical theory in DDEs [

The whole paper is organized and listed as the following: In Section 2, the triple zero bifurcation of system (1.1) is analyzed with delay state feedback control and the triple zero singularity is discussed in Section 3. In Section 4, the normal form near the triple zero point is derived by using center manifold theory and parameter perturbation method. Henceforth, the homoclinic solutions which emanating from triple-zero point are computed by varying free parameters continuously and the routes from double period solutions to chaos are simulated by choosing Poincare section underlying time delay control.

To discuss the triple-zero bifurcation of system (1.1), roots with zero real parts of the related characteristic equation are calculated by the linearized equation of DDEs (1.1). Equation (1.1) is rewritten as

x ˙ = y , y ˙ = − ε ( x 2 − 1 ) y − x + ε k x ( t − τ ) + ε k x ( t − 2 τ ) − β y 2 + γ x 4 , (2.1)

The linearized equation of Equations (2.1) is

x ˙ = y , y ˙ = ε y − x + ε k x ( t − τ ) + ε k x ( t − 2 τ ) , (2.2)

For any ϕ ∈ C , by Rieze representation theorem, there exists 2 × 2 bounded variation function η ( θ ) to express Equation (2.2) as linear operator

L ϕ = ∫ − τ 0 d η ( θ ) ϕ ( θ ) (2.3)

with

d η = ( 0 δ ( θ ) − δ ( θ ) + ε k δ ( θ + τ ) + ε k δ ( θ + 2 τ ) ε δ ( θ ) )

The related characteristic equation is written as

Δ ( λ ) = λ − ∫ − 2 τ 0 d η ( θ ) exp ( λ θ ) (2.4)

that is,

Δ ( λ ) = λ 2 − ε λ + 1 − ε k e − λ τ − ε k e − 2 λ τ ≡ 0 (2.5)

Obviously, the fold bifurcation occurs at the line 2 k ε = 1 and TB bifurcation occurs at point ( ε , k , τ ) = ( ε , 1 2 ε , 2 ε 3 ) since a double zero eigenvalues with algebraic multiplicity of 2 appearing in the characteristic Equation (2.5). Set λ = ± i ω ( ω > 0 ) , then we have

− ω 2 + 1 = ε k cos ( ω τ ) + ε k cos ( 2 ω τ ) , ε ω = ε k sin ( ω τ ) + ε k sin ( 2 ω τ ) , (2.6)

By computation, we get

cos ( ω τ ) = − 2 ω 2 − 3 4 ε 2 ω 2 + 4 ω 4 − 8 ω 2 + 3 , sin ( ω τ ) = 2 ε ω 4 ε 2 ω 2 + 4 ω 4 − 8 ω 2 + 3 (2.7)

Solve ω from Equations (2.6) to get

4 ε 4 ω 2 + 8 ε 2 ω 4 − 16 ε 2 ω 2 + 4 ω 6 + 5 ε 2 − 16 ω 4 + 21 ω 2 − 9 = 0 (2.8)

Therefore, Hopf line is given by the curves

τ = 1 ω arccos ( − ( 2 ω 2 − 3 ) 4 ε 2 ω 2 + 4 ω 4 − 8 ω 2 + 3 )

and Triple-zero bifurcation happens at ( ε , k , τ ) = ( 1.3410 , 0.3729 , 0.8946 ) given that (H_{1}): The characteristic Equation (2.5) has no eigenvalues λ = i ω ( ω > 0 ) ;

(H_{2}): The characteristic Equation (2.5) has zero eigenvalue with algebra multiplicity 3 and geometry multiplicity 1.

By parameter perturbation, Equation (1.1) is written as

x ¨ + ε 0 ( x 2 − 1 ) x ˙ + x = ε 0 k 0 x ( t − τ ) + ε 0 k 0 x ( t − 2 τ ) + ( ε − ε 0 ) ( k 0 x ( t − τ ) + k 0 x ( t − 2 τ ) ) + ε 0 ( k − k 0 ) ( x ( t − τ ) + x ( t − 2 τ ) ) − ( ε − ε 0 ) ( x 2 − 1 ) x ˙ − β x ˙ 2 + γ x 4 , (3.1)

for any x ∈ R . By Rieze representation theorem, the linearized version of system (3.1) can be written as

X ˙ = ∫ − 2 τ 0 d η ( θ ) X t ( θ ) (3.2)

with X = ( x , x ˙ ) T . For any ϕ ∈ C ( [ − 2 τ ,0 ] , R 2 ) , define the linear operator L by

L ϕ = A ϕ ( 0 ) + B ϕ ( − τ ) + C ϕ ( − 2 τ ) , θ = 0 (3.3)

with

A = ( 0 1 − 1 ε 0 ) , B = ( 0 0 ε 0 k 0 0 ) , C = ( 0 0 ε 0 k 0 0 ) . (3.4)

and introduce the linear operator L v via small parameter perturbation to get

L v = A v ϕ ( 0 ) + B v ϕ ( − τ ) + C v ϕ ( − 2 τ ) (3.5)

with

A v = ( 0 0 0 ε − ε 0 ) , B v = ( 0 0 ( ε − ε 0 ) k 0 + ε 0 ( k − k 0 ) 0 ) C v = ( 0 0 ( ε − ε 0 ) k 0 + ε 0 ( k − k 0 ) 0 ) (3.6)

Based on the foundation theory of DDEs, the linear operator L defines a strong continuous semigroup with infinitesimal generator A to be expressed as

A ϕ = { d ϕ d θ , − 2 τ ≤ θ < 0 , L ϕ ( θ ) , θ = 0 (3.7)

The adjoint operator A * in its conjugate phase space C ( [ 0,2 τ ] → R 2 ) is written as

A * ψ = { − d ψ d s , 0 < s ≤ 2 τ , L * ψ ( s ) , s = 0 (3.8)

with

L * ψ ( s ) = ∫ − 2 τ 0 d η T ( − s ) ψ ( s ) = A T ψ ( 0 ) + B T ψ ( τ ) + C T ψ ( 2 τ ) (3.9)

For any ϕ ∈ C , ψ ∈ C * , define the inner product as the following bilinear form

〈 ψ , ϕ 〉 = ψ T ( 0 ) ϕ ( 0 ) − ∫ − 2 τ 0 ∫ 0 θ ψ T ( ξ − θ ) d η ( θ ) ϕ ( ξ ) d ξ (3.10)

Bogokonav and Takens firstly put forward that Hopf and homoclinic bifurcating from BT point in ODEs. As for DDEs, authors have also verified nongenerate TB bifurcation branches and homoclinic connection while triple zero bifurcation occurs. The following theorem defines triple-zero singularity.

Theorem 1 [_{1}) and (H_{2}), the linearized version of DDEs (3.1) has T-B singularity if and only if the following condition holds:

1) r a n k ( A + B + C ) = n − 1 ;

2) if N ( A + B + C ) = s p a n { q 0 } , then q 0 ∈ R 2 and ( B τ + 2 C τ + I ) q 0 ∈ R a n g e ( A + B + C ) ;

3) if ( A + B + C ) q 1 = ( B τ + I + 2 C τ ) q 0 , then q 1 ∈ R 2 and ( B τ + 2 C τ + I ) q 1 − ( 1 2 B τ 2 + 2 C τ 2 ) q 0 ∈ R a n g e ( A + B + C ) ;

4) if ( A + B + C ) q 2 = ( B τ + 2 C τ + I ) q 1 − ( 1 2 B τ 2 + 2 C τ 2 ) q 0 , then q 2 ∈ R 2 and ( τ 3 6 B + 8 6 τ 3 C ) q 0 − ( 1 2 B τ 2 + 2 C τ 2 ) q 1 + ( B τ + 2 C τ + I ) q 2 not belongs to R a n g e ( A + B + C ) , where ϕ 0 , ϕ 2 ∈ R 2 .

Theorem 1 can be expressed equivalently to

Theorem 2 1) if N ( A + B + C ) = s p a n { q 0 } , then r a n k ( A + B + C , ( B τ + 2 C τ + I ) q 0 ) = n − 1 ;

2) if ( A + B + C ) q 1 = ( B τ + I + 2 C τ ) q 0 , then r a n k ( A + B + C , ( B τ + 2 C τ + I ) q 1 − ( 1 2 B τ 2 + 2 C τ 2 ) q 0 ) = n − 1 .

3) if ( A + B + C ) q 2 = ( B τ + 2 C τ + I ) q 1 − ( 1 2 B τ 2 + 2 C τ 2 ) q 0 , then r a n k ( A + B + C , ( τ 3 6 B + 8 6 τ 3 C ) q 0 − ( 1 2 B τ 2 + 2 C τ 2 ) q 1 + ( B τ + 2 C τ + I ) q 2 ) = n . It is seen that the eigenfunction associated with triple-zero point is chosen as

ϕ 0 ( θ ) = q 0 , ϕ 1 ( θ ) = θ q 0 + q 1 , ϕ 2 ( θ ) = θ 2 2 q 0 + q 1 θ + q 2

which satisfies

A ϕ 0 ( θ ) = 0, A ϕ 1 ( θ ) = ϕ 0 ( θ ) , A ϕ 2 ( θ ) = ϕ 1 ( θ )

since q 0 = ( 1 0 ) and q 1 = ( 0 1 ) , q 2 = ( 1 0 ) satisfies Theorem 1 and Theorem 2, the triple-zero singularity is verified.

The eigenfunction of the adjoint operator A * is defined and given that

A * p 2 ( s ) = 0 , A * p 1 ( s ) = p 2 ( s ) , A * p 0 ( s ) = p 1 ( s )

with p 0 , p 1 , p 2 ∈ C * , and we also have the following theorem

Theorem 3 The eigenfunction of the adjoint operator A * can be expressed as p 2 ( s ) = ψ 2 and p 1 ( s ) = − s ψ 2 + ψ 1 , p 0 ( s ) = s 2 2 ψ 2 − s ψ 1 + ψ 0 , with 0 ≤ s ≤ 2 τ , which satisfies

1) ψ 2 T ( A + B + C ) = 0 ;

2) ψ 1 T ( A + B + C ) = ψ 2 T ( I + τ B + 2 τ C ) ;

3) ψ 1 T ( I + τ B + 2 τ C ) − ψ 2 T ( τ 2 2 B + 2 τ 2 C ) = ψ 0 T ( A + B + C ) ;

4)

ψ 2 T q 2 + ψ 2 B q 0 τ 3 6 − ψ 2 B q 1 τ 2 2 + ψ 2 B q 2 τ + ψ 2 C q 0 8 τ 3 6 − ψ 2 C q 1 2 τ 2 + ψ 2 C q 2 2 τ = 1 ;

5) ψ 1 T p h i 1 + τ 3 6 ψ 1 T B q 0 − τ 2 2 ψ 2 T B q 1 − τ 2 2 ψ 1 T B q 0 + τ ψ 1 T B q 1 + 8 τ 3 6 ψ 1 T C q 0 − 2 τ 2 ψ 2 T C q 1 − 2 τ 2 ψ 1 T C q 0 + 2 τ ψ 1 T C q 1 = 1 ;

6)

ψ 0 T q 0 + τ 3 6 ψ 2 B q 0 − τ 2 2 ψ 1 B q 0 + τ ψ 0 B q 0 + 8 τ 3 6 ψ 2 C q 0 − 2 τ 2 ψ 1 C q 0 + 2 τ ψ 0 C q 0 = 1 ;

7) ψ 2 q 1 − ψ 2 B q 0 τ 2 2 + ψ 2 B q 1 τ − ψ 2 C q 0 2 τ 2 + ψ 2 C q 1 2 τ = 0 .

Choose ψ 0 = ( − 2.0292 0.8668 ) and ψ 1 = ( − 4.3627 1.8636 ) , ψ 2 = ( − 2.4932 1.8592 ) then it is verified that conditions (1) - (7) are satisfied in theorem 3.

Define P is projection operator from phase space to its eigenspace associated with triple zero singularity. Assume Λ = { 0 , 0 } and P Λ is the related invariant eigenspace and Q Λ is the complementary subspace of P Λ . Now we consider the decomposition of the phase space as C = P Λ ⊕ Q Λ . Define the dual eigenspace of P Λ as P Λ * = s p a n { p 0 ( s ) , p 1 ( s ) , p 2 ( s ) } , then it is directly derived that

A * p 2 ( s ) = 0 , A * p 1 ( s ) = p 2 ( s ) , A * p 0 ( s ) = p 1 ( s )

To apply the method of Faria and Magalhães [

#Math_98# (4.2)

with J = ( 0 1 0 0 0 1 0 0 0 ) , Ψ ( 0 ) = c o l ( ψ 0 , ψ 1 , ψ 2 ) , and also the bifurcation equation

v ′ t = A v t + ( I − Π ) X 0 F ( y 1 ϕ 0 + y 2 ϕ 1 + y 3 ϕ 2 + v t ) , (4.3)

with the definition

X 0 = { I θ = 0 0 − 2 τ ≤ θ ≤ 0 (4.4)

herein

F ( y 1 ϕ 0 + y 2 ϕ 1 + y 3 ϕ 2 + v t ) = ( 0 − ε 0 ( y 1 + y 3 + v t ( 1 ) ( 0 ) ) 2 ( y 2 + v t ( 2 ) ( 0 ) ) − β ( y 2 + v t ( 2 ) ( 0 ) ) 2 + γ ( y 1 + y 3 + v t ( 1 ) ( 0 ) ) 4 ) (4.5)

Set

v t = ( ∑ i + j + k = 2 g i j k ( 1 ) y 1 i y 2 j y 3 k + ⋯ ∑ i + j + k = 2 g i j k ( 2 ) y 1 i y 2 j y 3 k + ⋯ ) (4.6)

Accordingly, setting ε − ε 0 = μ v , k − k 0 = s v , τ − τ 0 = m v , the Taylor expansion of Equation (4.2) is rewritten as sum of series as

Ψ T ( 0 ) ( L v ( y 1 ϕ 0 + y 2 ϕ 1 + y 3 ϕ 2 + v t ) + F ( y 1 ϕ 0 + y 2 ϕ 1 + y 3 ϕ 2 + v t ) ) = ∑ i + j + k + s ≥ 2 f i j k s ( 1 ) y 1 i y 2 j y 3 k v s (4.7)

and

( I − Π ) X 0 F ( y 1 ϕ 0 + y 2 ϕ 1 + y 3 ϕ 2 + v t ) = ∑ i + j + k + s ≥ 2 f i j k s ( 2 ) y 1 i y 2 j y 3 k v s (4.8)

Let H j 4 denote the homogeneous polynomial space of degree j ( j ≥ 2 ) with respect to variable ( y 1 , y 2 , y 3 , v ) . To do further calculation of change of variable ( y 1 , y 2 , y 3 , v ) , one defines the conjugate operator M j 1 in H j 4 as

M j 1 p ( y , v ) = p y ( y , v ) ( J y ) − J p ( y , v ) (4.9)

On the center manifold, the normal form of Equations (4.5) is expressed by

( y ′ 1 y ′ 2 y ′ 3 ) = B ( y 1 y 2 y 3 ) + g 2 ( 1 ) ( y 1 , y 2 , y 3 ,0 ) + g 3 ( 1 ) ( y 1 , y 2 , y 3 ,0 )

with

g 2 ( 1 ) ( y 1 , y 2 , y 3 ,0 ) = P r o j I m ( M 2 ( 1 ) ) c f 2 ( 1 ) ( y 1 , y 2 , y 3 ,0 ) g 3 ( 1 ) ( y 1 , y 2 , y 3 ,0 ) = P r o j I m ( M 3 ( 1 ) ) c f ˜ 3 ( 1 ) ( y 1 , y 2 , y 3 ,0 )

The bases of I m ( M 2 1 ) is expressed as

( y 1 y 2 0 0 ) , ( y 2 y 3 0 0 ) , ( y 1 y 3 + y 2 2 0 0 ) , ( y 3 2 0 0 ) , ( y 2 v 0 0 ) , ( y 3 v 0 0 ) , ( − y 1 2 2 y 1 y 2 0 ) , ( − y 2 2 2 y 2 y 3 0 ) , ( − y 1 y 2 y 1 y 3 + y 2 2 0 ) , ( − y 1 y 3 y 2 y 3 0 ) , ( − y 2 y 3 y 3 2 0 ) , ( − y 1 v y 2 v 0 ) , ( − y 2 v y 3 v 0 ) , ( 0 − y 1 2 2 y 1 y 2 ) , ( 0 − y 2 2 2 y 2 y 3 ) , ( 0 y 3 2 0 ) , ( 0 − y 1 y 2 y 1 y 3 + y 2 2 ) , ( 0 − y 2 y 3 y 3 2 ) , ( 0 − y 1 y 3 y 2 y 3 ) , ( 0 − y 1 v y 2 v ) , ( 0 − y 2 v y 3 v ) , ( 0 y 3 v 0 )

The bases of the K e r ( M ) is listed as

( y 1 2 y 1 y 2 y 2 2 2 ) , ( y 1 2 y 1 y 2 y 1 y 3 ) , ( 0 y 1 2 y 1 y 2 ) , ( 0 0 y 1 2 ) , ( y 1 v y 2 v y 3 v ) , ( 0 y 1 v y 2 v ) , ( 0 0 y 1 v )

Based on the projection operator M j 1 p ( y ,0 ) with decomposition of homogeneous polynomial space H j , Equations (3.1) is transformed into its simplified version

y ′ 1 = y 2 , y ′ 2 = y 3 , y ′ 3 = a 0 y 3 v + a 1 y 2 v + a 2 y 1 v + a 3 y 1 y 3 + a 4 2 y 2 ( 2 ) + a 5 y 1 y 2 + a 6 4 y 1 2 , (4.10)

with

a 0 = ψ 2 ( 2 ) μ + 2 ψ 2 ( 2 ) k 0 μ + 2 ψ 2 ( 2 ) s ε 0 + 5 2 ψ 2 ( 2 ) k 0 μ τ 0 2 + 5 2 ψ 2 ( 2 ) s τ 0 2 ε 0 + 8 ψ 2 ( 2 ) μ v s + 10 ψ 2 ( 2 ) μ v s τ 0 2 + 5 ψ 2 ( 2 ) k 0 m τ 0 ε 0 − 12 μ ψ 1 ( 2 ) s τ 0 v − 3 k 0 m ψ 1 ( 2 ) ε 0 − 3 k 0 μ ψ 1 ( 2 ) τ 0 − 3 ψ 1 ( 2 ) s τ 0 ε 0 + 8 μ ψ 0 ( 2 ) s v + 2 k 0 μ ψ 0 ( 2 ) + 2 ψ 0 ( 2 ) s ε 0 + μ ψ 0 ( 2 ) , a 1 = − 12 μ ψ 2 ( 2 ) s τ 0 v − 3 k 0 m ψ 2 ( 2 ) ε 0 − 3 k 0 μ ψ 2 ( 2 ) τ 0 + 8 μ ψ 1 ( 2 ) s v − 3 ψ 2 ( 2 ) s τ 0 ε 0 + 2 k 0 μ ψ 1 ( 2 ) + 2 ψ 1 ( 2 ) s ε 0 + μ ψ 1 ( 2 ) ,

a 2 = 8 μ ψ 2 ( 2 ) s v + 2 k 0 μ ψ 2 ( 2 ) + 2 ψ 2 ( 2 ) s ε 0 + μ ψ 2 ( 2 ) , a 3 = − 2 β ψ 0 ( 2 ) − 2 β ψ 2 ( 2 ) , a 4 = − 2 ψ 0 ( 2 ) β , a 5 = − 2 ψ 1 ( 2 ) β , a 6 = 2 ψ 2 ( 2 ) β

By Equation (4.10), one derives that both double-zero bifurcation line and Hopf-bifurcation line are produced as varying variable v and two lines are merged at v = 0 . Accordingly, the produced fold line is expressed as:

{ ( μ , s , m ) | 8 μ ψ 2 ( 2 ) s v 2 + 2 k 0 μ ψ 2 ( 2 ) v + 2 ψ 2 ( 2 ) s v ε 0 + μ ψ 2 ( 2 ) v = 0 } (4.11)

The double-zero bifurcation line is denoted as

{ ( μ , s , m ) | − 12 μ ψ 2 ( 2 ) s τ 0 v 2 − 3 k 0 m ψ 2 ( 2 ) v ε 0 − 3 k 0 μ ψ 2 ( 2 ) τ 0 v + 8 μ ψ 1 ( 2 ) s v 2 − 3 ψ 2 ( 2 ) s τ 0 v ε 0 + 2 k 0 μ ψ 1 ( 2 ) v + 2 ψ 1 ( 2 ) s v ε 0 + μ ψ 1 ( 2 ) v = 0 } (4.12)

and Hopf line is also expressed as

ω 2 = 12 μ ψ 2 ( 2 ) s τ 0 v 2 + 3 k 0 m ψ 2 ( 2 ) v ε 0 + 3 k 0 μ ψ 2 ( 2 ) τ 0 v − 8 μ ψ 1 ( 2 ) s v 2 + 3 ψ 2 ( 2 ) s τ 0 v ε 0 − 2 k 0 μ ψ 1 ( 2 ) v − 2 ψ 1 ( 2 ) s v ε 0 − μ ψ 1 ( 2 ) v ,

{ ( μ , s , m ) | − ω 2 v ψ 2 ( 2 ) μ − ω 2 v μ ψ 0 ( 2 ) + 2 v ψ 2 ( 2 ) k 0 μ + 2 v ψ 2 ( 2 ) s ε 0 + 8 ψ 2 ( 2 ) μ v 2 s − 5 2 ω 2 v ψ 2 ( 2 ) k 0 μ τ 0 2 − 5 2 ω 2 v ψ 2 ( 2 ) s τ 0 2 ε 0 − 10 ω 2 ψ 2 ( 2 ) μ v 2 s τ 0 2 + 12 ω 2 μ ψ 1 ( 2 ) s τ 0 v 2 + 3 ω 2 v k 0 m ψ 1 ( 2 ) ε 0 + 3 ω 2 v k 0 μ ψ 1 ( 2 ) τ 0 + 3 ω 2 v ψ 1 ( 2 ) s τ 0 ε 0 − 5 ω 2 v ψ 2 ( 2 ) k 0 m τ 0 ε 0 − 2 ω 2 v ψ 2 ( 2 ) k 0 μ − 2 ω 2 v ψ 2 ( 2 ) s ε 0 − 8 ω 2 ψ 2 ( 2 ) μ v 2 s − 8 ω 2 μ ψ 0 ( 2 ) s v 2 − 2 ω 2 v k 0 μ ψ 0 ( 2 ) − 2 ω 2 v ψ 0 ( 2 ) s ε 0 + v ψ 2 ( 2 ) μ = 0 } (4.13)

Set m = 0 , then double zero line which is drawn in blue color is in coincidence with the saddle node line expressed by the above parameter sets. The bifurcation of triple zero singularity is acquired as Hopf lines merged with double zero lines, as shown in

on phase space as either k descending or ε ascending, as shown in

As the double zero bifurcation line merges into Hopf point, the triple zero bifurcation point arose in van der Pol system. The complex dynamics of van der Pol oscillator with delay feedback control was investigated. With the application of analytical technique of dimension reduction method combined with the center manifold theory, the normal form near the triple zero singularity was derived and the bifurcating homoclinic solution was analyzed further. With the aid of technique artificial tool of DDE-Biftool software, the simulated homoclinic solution was plotted in phase space continuously. The complex dynamics as double period limit cycle near bifurcation point of triple zero singularity was observed and the routes to chaos were also simulated by choosing the corresponding Poincare section as varying parameter continuously.

The author declares no conflicts of interest regarding the publication of this paper.

Ma, S.Q. (2021) Triple-Zero Bifurcation of Van Der Pol Oscillator with Delay Feedback. International Journal of Modern Nonlinear Theory and Application, 10, 106-118. https://doi.org/10.4236/ijmnta.2021.103008