_{1}

^{*}

This paper aims to introduce new notions of (fuzzy) n-fold P-ideals and (fuzzy) n-fold weak P-ideals in BCI-algebras, and investigate several properties of the foldness theory of P-ideals in BCI-algebras. Finally, we construct a computer-program for studying the foldness theory of P-ideals in BCI-algebras.

The study of BCK/BCI-algebras was initiated by Iséki [

Huang and Chen [

In this paper, we redefined a P-ideal of BCI-algebras and studied the foldness theory of fuzzy P-ideals, P-weak ideals, fuzzy weak P-ideals, and weak P-weak ideals in BCI-algebras. This theory can be considered as a natural generalization of P-ideals. Indeed, given any BCI-algebras X, we use the concept of fuzzy point to characterize n-fold P-ideals in X. Finally, we construct some algorithms for studying the foldness theory of P-ideals in BCI-algebras.

Here we include some elementary aspects of BCI that are necessary for this paper. For more detail, we refer to [

An algebra ( X ; ∗ , 0 ) of type (2, 0) is called BCI-algebra if

∀ x , y , z ∈ X the following conditions hold:

BCI-1. ( ( x ∗ y ) ∗ ( x ∗ z ) ) ∗ ( z ∗ y ) = 0 ;

BCI-2. ( x ∗ ( x ∗ y ) ) ∗ y = 0 ;

BCI-3. x ∗ x = 0 ;

BCI-4. x ∗ y = 0 and y ∗ x = 0 ⇒ x = y .

A binary relation ≤ can be defined by

BCI-5. x ≤ y ⇔ x ∗ y = 0 .

Then ( X , ≤ ) is a partially ordered set with least element 0.

The following properties also hold in any BCI-algebra [

1) x ∗ 0 = x ;

2) x ∗ y = 0 and y ∗ z = 0 ⇒ x ∗ z = 0 ;

3) x ∗ y = 0 ⇒ ( x ∗ z ) ∗ ( y ∗ z ) = 0 and ( z ∗ y ) ∗ ( z ∗ x ) = 0 ;

4) ( x ∗ y ) ∗ z = ( x ∗ z ) ∗ y ;

5) ( x ∗ y ) ∗ x = 0 ;

6) x ∗ ( x ∗ ( x ∗ y ) ) = x ∗ y ; let ( X , ∗ , 0 ) be a BCI-algebra.

Definition 2.1. A fuzzy subset of a BCK/BCI-algebra X is a function μ : X → [ 0 , 1 ] .

Definition 2.2. (C. Lele, C. Wu, P. Weke, T. Mamadou, and C.E. Njock [

x λ ( y ) = { λ if x = y , 0 otherwise .

We denote by X ˜ = { x λ : x ∈ X , λ ∈ ( 0 , 1 ] } the set of all fuzzy points on X, and we define a binary operation on X ˜ as follows

x λ ∗ y μ = ( x ∗ y ) min ( λ , μ )

It is easy to verify ∀ x λ , y μ , z α ∈ X ˜ , the following conditions hold:

BCI-1’. ( ( x λ ∗ y μ ) ∗ ( x λ ∗ z α ) ) ∗ ( z α ∗ y μ ) = 0 min ( λ , μ , α ) ;

BCI-2’. ( x λ ∗ ( x λ ∗ y μ ) ) ∗ y μ = 0 min ( λ , μ ) ;

BCI-3’. x λ ∗ x μ = 0 min ( λ , μ ) ;

BCK-5’. 0 μ ∗ x λ = 0 min ( λ , μ ) .

Remark 2.3. (C. Lele, C. Wu, P. Weke, T. Mamadou, and C.E. Njock [

We can also establish the following conditions ∀ x λ , y μ , z α ∈ X ˜ :

1’) x λ ∗ 0 μ = x min ( λ , μ ) ;

2’) x λ ∗ y μ = 0 min ( λ , μ ) and y μ ∗ z α = 0 min ( μ , α ) ⇒ x λ ∗ z α = 0 min ( λ , α ) ;

3’) x λ ∗ y μ = 0 min ( λ , μ ) ⇒ ( x λ ∗ z α ) ) ∗ ( y μ ∗ z α ) = 0 min ( λ , μ , α ) and

( z α ∗ y μ ) ∗ ( z α ∗ x λ ) = 0 min ( λ , μ , α ) ;

4’) ( x λ ∗ y μ ) ∗ z α = ( x λ ∗ z α ) ∗ y μ ;

5’) ( x λ ∗ y μ ) ∗ x λ = 0 ( λ , μ ) ;

6’) x λ ∗ ( x λ ∗ ( x λ ∗ y μ ) ) = x λ ∗ y μ .

We recall that if A is a fuzzy subset of a BCK/BCI algebra X, then we have the following:

A ˜ = { x λ ∈ X ˜ : A ( x ) ≥ λ , λ ∈ ( 0 , 1 ] } . (1)

∀ λ ∈ ( 0 , 1 ] , X ˜ λ = { x λ : x ∈ X } , and A ˜ λ = { x λ ∈ X ˜ λ : A ( x ) ≥ λ } (2)

We also have X ˜ λ ⊆ X ˜ , A ˜ ⊆ X ˜ , A ˜ λ ⊆ A ˜ , A ˜ λ ⊆ X ˜ λ , and one can easily check that ( X ˜ λ ; ∗ , 0 λ ) it is a BCK-algebra.

Definition 2.4 (Isèki [

1) 0 ∈ I ;

2) ∀ x , y ∈ X , ( x ∗ y ∈ I and y ∈ I ) ⇒ x ∈ I .

Definition 2.5. A nonempty subset I of BCI-algebra X is P-ideal if it satisfies:

1) 0 ∈ I ;

2) ∀ x , y , z ∈ X

( ( x ∗ z ) ∗ ( y ∗ z ) ∈ I and y ∈ I ) ⇒ x ∈ I

Definition 2.6 (Xi [

1) ∀ x ∈ X , A ( 0 ) ≥ A ( x ) ;

2) ∀ x , y ∈ X , A ( x ) ≥ min ( A ( x ∗ y ) , A ( y ) ) .

Definition 2.7 (Xi [

1) ∀ x ∈ X , A ( 0 ) ≥ A ( x ) ;

2) ∀ x , y , z ∈ X

A ( x ) ≥ min ( A ( ( x ∗ z ) ∗ ( y ∗ z ) ) ∗ A ( y ) )

Definition 2.8 [

1) ∀ ν ∈ Im ( A ) ; 0 ν ∈ A ˜ ;

2) ∀ x λ , y μ ∈ X . Such that x λ ∗ y μ ∈ A ˜ and y μ ∈ A ˜ , we have

x min ( λ , μ ) ∈ A ˜ .

Theorem 2.9 [

1) A is a fuzzy ideal;

2) ∀ x λ , y μ ∈ A ˜ , ( z α ∗ y μ ) ∗ x λ = 0 min ( λ , μ , α ) ⇒ z min ( λ , μ , α ) ∈ A ˜ ;

3) ∀ t ∈ ( 0 , 1 ] , the t-level subset A t = { x ∈ X : A ( x ) ≥ t } in an ideal when A t ≠ ϕ ;

4) A ˜ is a weak ideal.

Throughout this paper X ˜ is the set of fuzzy points on BCI-algebra X and n ∈ ℕ (where ℕ the set of all the natural numbers).

Let us denote ( ⋯ ( ( x ∗ y ) ∗ y ) ∗ ⋯ ) ∗ y by x ∗ y n .

Moreover, ( ⋯ ( ( x min ( λ , μ ) ∗ 0 μ ) ∗ 0 μ ) ∗ ⋯ ) ∗ 0 μ by x λ ∗ y μ n (where y and y μ occurs respectively n times) with x , y ∈ X , x λ , y λ ∈ X ˜ .

Definition 3.1. A nonempty subset I of a BCI-algebra X is an n-fold P-ideal of X if it satisfies :

1) 0 ∈ I ;

2) ∀ x , y , z ∈ X ,

( ( x ∗ z ) ∗ ( y ∗ z ) ∈ I and y ∈ I ) ⇒ x ∗ z n ∈ I .

Definition 3.2. A fuzzy subset A of X is called a fuzzy n-fold P-ideal of X if it satisfies :

1) ∀ x ∈ X , A ( 0 ) ≥ A ( x ) ;

2) ∀ x , y , z ∈ X ,

A ( x ∗ z n ) ≥ min ( A ( ( x ∗ z ) ∗ ( y ∗ z ) ) ∗ A ( y ) ) .

Definition 3.3. A ˜ is P-weak ideal of X ˜ if

1) ∀ ν ∈ Im ( A ) , 0 ν ∈ A ˜ ;

2) ∀ x λ , y μ , z α ∈ X ˜ ,

( ( x λ ∗ z α ) ∗ ( y μ ∗ z α ) ∈ A ˜ and y μ ∈ A ˜ ) ⇒ x min ( λ , μ ) ∗ z α A ˜ .

Definition 3.4. A ˜ is an n-fold P-weak ideal of X ˜ if

1) ∀ ν ∈ Im ( A ) , 0 ν ∈ A ˜ ;

2) ∀ x λ , y μ , z α ∈ X ˜ ,

( ( x λ ∗ z α ) ∗ ( y μ ∗ z α ) ∈ A ˜ and y μ ∈ A ˜ ) ⇒ x min ( λ , μ ) ∗ z α n ∈ A ˜ .

Example 3.5. Let X = { 0 , a , b , c } with ∗ defined by

By simple computations, one can prove that ( X , ∗ , 0 ) is BCI-algebra. Define μ : X → [ 0 , 1 ] by μ ( 0 ) = 1 , μ ( a ) = μ ( b ) = μ ( c ) = t , where t ∈ [ 0 , 1 ] .

* | 0 | a | b | c |
---|---|---|---|---|

0 | 0 | 0 | 0 | c |

a | a | 0 | 0 | c |

b | b | b | 0 | c |

c | c | c | c | 0 |

One can easily check that for any n ≥ 3 .

Is a fuzzy n-fold P-ideal.

Remark 3.6. A ˜ is a 1-fold P-weak ideal of a BCK-algebra X ˜ if A ˜ is P-weak ideal of X ˜ .

Theorem 3.7. If A is a fuzzy subset of X, then A is a fuzzy n-fold P-ideal if A ˜ is an n-fold P-weak ideal.

Proof. ⇒

- Let λ ∈ Im ( A ) , it is easy to prove that 0 λ ∈ A ˜ ;

- Let ( x λ ∗ z α ) ∗ ( y μ ∗ z α ) ∈ A ˜ and y μ ∈ A ˜

A ( ( x ∗ z ) ∗ ( y ∗ z ) ) ≥ min ( λ , μ , α ) and A ( y ) ≥ μ .

Since A is a fuzzy n-fold P-ideal, we have

A ( x ∗ z n ) ≥ min ( A ( ( x ∗ z ) ∗ ( y ∗ z ) ) ∗ A ( y ) ) ≥ min ( min ( λ , μ , α ) , μ ) = min ( λ , μ , α )

Therefore ( x ∗ z n ) min ( λ , μ , α ) = x min ( λ , μ ) ∗ z α n ∈ A ˜ .

⇐

- Let x ∈ X , it is easy to prove that A ( 0 ) ≥ A ( x ) ;

- Let x , y , z ∈ X and let A ( ( x ∗ z ) ∗ ( y ∗ z ) ) = β and A ( y ) = α , then ( ( x ∗ z ) ∗ ( y ∗ z ) ) min ( β , α ) = ( ( x β ∗ z α ) ∗ ( y α ∗ z α ) ) ∈ A ˜ and y α ∈ A ˜ .

Since A ˜ is P-weak ideal, we have

x min ( β , α ) ∗ z α n = ( x ∗ z n ) min ( β , α ) ∈ A ˜

Thus A ( x ∗ z n ) ≥ min ( β , α ) = min ( A ( ( x ∗ z ) ∗ ( y ∗ z ) ) , A ( y ) ) . □

Proposition 3.8. An n-fold P-weak ideal is a weak ideal.

Proof. ∀ x λ , y μ ∈ X ˜ let x λ ∗ y μ = ( x λ ∗ 0 μ ) ∗ ( y μ ∗ 0 μ ) ∈ A ˜ and y μ ∈ A ˜ , since A ˜ n-fold P-weak ideal, we have

x min ( λ , μ ) = x min ( λ , μ ) ∗ 0 μ n ∈ A ˜

Thus A ˜ is a weak ideal.

Corollary 3.9. A fuzzy n-fold P-ideal is a fuzzy ideal.

Theorem 3.10. Let { A ˜ i ∈ I } be a family of n-fold P-weak ideals and { A i ∈ I } be a family of fuzzy-fold P-ideals. Then: 1) ∩ i ∈ I A ˜ i is an n-fold P-weak ideal.

2) ∪ i ∈ I A ˜ i is an n-fold P-weak ideal.

3) ∩ i ∈ I A i is a fuzzy n-fold P-ideal.

4) ∪ i ∈ I A i is a fuzzy n-fold P-ideal.

Proof. 1) ∀ λ ∈ Im ( ∩ i ∈ I A ˜ i ) , then λ ∈ Im ( A ˜ i ) , ∀ i , so, 0 λ ∈ A ˜ i , ∀ i , i.e. 0 λ ∈ ∩ i ∈ I A ˜ i . For every x μ , y λ , z α ∈ X ˜ , if ( x λ ∗ z α ) ∗ ( y μ ∗ z α ) ∈ ∩ i ∈ I A ˜ i and y μ ∈ ∩ i ∈ I A ˜ i , then

( x λ ∗ z α ) ∗ ( y μ ∗ z α ) ∈ A ˜ i and y μ ∈ A ˜ i ∀ i , thus

x min ( λ , μ ) ∗ z α n ∈ A ˜ i , ∀ i

So x min ( λ , μ ) ∗ z α n ∈ ∩ i ∈ I A ˜ i . Thus ∩ i ∈ I A ˜ i is an n-fold P-weak ideals.

2) ∀ λ ∈ Im ( ∪ i ∈ I A ˜ i ) , then ∃ i 0 ∈ I , such that λ ∈ A ˜ i 0 , so, 0 λ ∈ A ˜ i 0 , i.e. 0 λ ∈ ∪ i ∈ I A ˜ i . For every x μ , y λ , z α ∈ X ˜ , if ( x λ ∗ z α ) ∗ ( y μ ∗ z α ) ∈ ∪ i ∈ I A ˜ i and y μ ∈ ∪ i ∈ I A ˜ i , then ∃ i 0 ∈ I such that

( x λ ∗ z α ) ∗ ( y μ ∗ z α ) ∈ A ˜ i 0 and y μ ∈ A ˜ i 0 , thus x min ( λ , μ ) ∗ z α n ∈ A ˜ i 0 .

So x min ( λ , μ ) ∗ z α n ∈ ∪ i ∈ I A ˜ i . Thus ∪ i ∈ I A ˜ i is an n-fold P-weak ideals.

3) Follows from 1) and Theorem 3.7.

4) Follows from 2) and Theorem 3.7.

In this section, we define and give some characterizations of (fuzzy) n-fold weak P-weak ideals in BCI-algebras.

Definition 4.1. A nonempty subset I of X is called an n-fold weak P-ideal of X if it satisfies

1) 0 ∈ I ;

2) ∀ x , y , z ∈ X ( ( x ∗ z ) ∗ ( y ∗ z n ) ∈ I and y ∈ I ) ⇒ x ∈ I .

Definition 4.2. A fuzzy subset A of X is called a fuzzy n-fold weak P-ideal of X if it satisfies

1) ∀ x ∈ X , A ( 0 ) ≥ A ( x ) ;

2) ∀ x , y , z , A ( x ) ≥ min ( A ( ( x ∗ z ) ∗ ( y ∗ z n ) ) , A ( y ) ) .

Definition 4.3. A ˜ is a weak P-weak ideal of X ˜ if

1) ∀ ν ∈ Im ( A ) , 0 ν ∈ A ˜ ;

2) ∀ x λ , y μ , z α ∈ X ˜

( ( x λ ∗ z α ) ∗ ( y μ ∗ z α ) ∈ A ˜ and y μ ∈ A ˜ ) ⇒ x min ( λ , μ , α ) ∈ A ˜ .

Definition 4.4. A ˜ is an n-fold a weak P-weak ideal of X ˜ if

1) ∀ ν ∈ Im ( A ) , 0 ν ∈ A ˜ ;

2) ∀ x λ , y μ , z α ∈ X ˜ ,

( ( x λ ∗ z α ) ∗ ( y μ ∗ z α n ) ∈ A ˜ and y μ ∈ A ˜ ) ⇒ x min ( λ , μ , α ) ∈ A ˜ .

Example 4.5. Let X = { 0 , 1 , 2 , 3 } in which ∗ is given by

* | 0 | a | b | c |
---|---|---|---|---|

0 | 0 | 0 | 0 | 0 |

a | a | 0 | 0 | 0 |

b | b | b | 0 | 0 |

c | c | c | c | 0 |

Then ( X ; ∗ , 0 ) is a BCI-algebra. Let t 1 , t 2 ∈ ( 0 , 1 ] and let us define a fuzzy subset A : X → [ 0 , 1 ] by

t 1 = A ( 0 ) = A ( a ) = A ( b ) > A ( c ) = t 2

It is easy to check that for any n > 2

A ˜ = { 0 λ : λ ∈ ( 0 , t 1 ] } ∪ { a λ : λ ∈ ( 0 , t 2 ] } ∪ { b λ : λ ∈ ( 0 , t 1 ] } ∪ { c λ : λ ∈ ( 0 , t 2 ] }

Is an n-fold weak P-weak ideal.

Remark 4.6. A ˜ is a 1-fold weak P-weak ideal of a BCK-algebra X if A ˜ is a weak P-weak ideal.

Theorem 4.7. [

Proof. ⇒

- Let λ ∈ Im ( A ) obviously 0 λ ∈ A ˜ ;

- Let ( x λ ∗ z α ) ∗ ( y μ ∗ z α n ) ∈ A ˜ and y μ ∈ A ˜ , then A ( ( x λ ∗ z α ) ∗ ( y μ ∗ z α n ) ) ≥ min ( λ , μ , α ) and A ( y ) ≥ μ .

Since A is a fuzzy n-fold weak P-ideal, we have

∀ x , y , z , A ( x ) ≥ min ( A ( ( x ∗ z ) ∗ ( y ∗ z n ) ) , A ( y ) ) ≥ min ( min ( λ , μ , α ) , α ) = min ( λ , μ , α )

Therefore x min ( λ , μ , α ) ∈ A ˜ .

⇐

- Let x ∈ X , it is easy to prove that A ( 0 ) ≥ A ( x ) ;

- Let ∀ x , y , z , A ( ( x ∗ z ) ∗ ( y ∗ z n ) ) = β and A ( y ) = α .

Then ( ( x ∗ z ) ∗ ( y ∗ z n ) ) min ( β , α ) = ( ( x β ∗ z β ) ∗ ( y α ∗ z β n ) ) ∈ A ˜ and y α ∈ A ˜ .

Since A ˜ is n-fold weak P-weak ideal, we have

x min ( β , α ) ∈ A ˜

Hence A ( x ) ≥ min ( β , α ) = min ( A ( ( x ∗ z ) ∗ ( y ∗ z n ) ) , A ( y ) ) .

Proposition 4.8. An n-fold weak P-weak ideal is a weak ideal.

Proof. Let x λ , y μ ∈ X ˜ and x λ ∗ y μ = ( x λ ∗ 0 μ ) ∗ ( y μ ∗ 0 μ n ) ∈ A ˜ and y μ .

Since A ˜ is n-fold weak P-weak ideal, we have x min ( λ , μ ) ∈ A ˜ .

Corollary 4.9. A fuzzy n-fold weak P-ideal is a fuzzy ideal.

Theorem 4.10. Let { A ˜ i ∈ I } be a family of n-fold weak P-weak ideals and { A i ∈ I } be a family of fuzzy n-fold weak P-ideals. then 1) ∩ i ∈ I A ˜ i is an n-fold weak P-weak ideal.

2) ∪ i ∈ I A ˜ i is an n-fold weak P-weak ideal.

3) ∩ i ∈ I A i is a fuzzy n-fold weak P-ideal.

4) ∪ i ∈ I A i is a fuzzy n-fold weak P-ideal.

Proof. 1) ∀ λ ∈ Im ( ∩ i ∈ I A ˜ i ) , then λ ∈ Im ( A ˜ i ) , ∀ i , so, 0 λ ∈ A ˜ i , ∀ i , i.e. 0 λ ∈ ∩ i ∈ I A ˜ i . For every x μ , y λ , z α ∈ X ˜ , if

( x λ ∗ z α ) ∗ ( y μ ∗ z α n ) ∈ ∩ i ∈ I A ˜ i and y μ ∈ ∩ i ∈ I A ˜ i , then

( x λ ∗ z α ) ∗ ( y μ ∗ z α n ) ∈ A ˜ i and y μ ∈ A ˜ i ∀ i , thus

x min ( λ , μ , α ) ∈ A ˜ i , ∀ i

So x min ( λ , μ , α ) ∈ ∩ i ∈ I A ˜ i . Thus ∩ i ∈ I A ˜ i is an n-fold weak P-weak ideal.

2) ∀ λ ∈ Im ( ∪ i ∈ I A ˜ i ) , then ∃ i 0 ∈ I , such that λ ∈ A ˜ i 0 , so, 0 λ ∈ A ˜ i 0 , i.e. 0 λ ∈ ∪ i ∈ I A ˜ i . For every x μ , y λ , z α ∈ X ˜ , if ( x λ ∗ z α ) ∗ ( y μ ∗ z α n ) ∈ ∪ i ∈ I A ˜ i and y μ ∈ ∪ i ∈ I A ˜ i , then ∃ i 0 ∈ I such that

( x λ ∗ z α ) ∗ ( y μ ∗ z α n ) ∈ A ˜ i 0 and y μ ∈ A ˜ i 0 , thus x min ( λ , μ , α ) ∈ A ˜ i 0 .

So x min ( λ , μ , α ) ∈ ∪ i ∈ I A ˜ i . Thus ∪ i ∈ I A ˜ i is an n-fold weak P-weak ideal.

3) Follows from 1) and Theorem 4.7.

4) Follows from 2) and Theorem4.7.

Here we give some algorithms for studding the structure of the foldness of (fuzzy) P-ideals In BCI-algebras

Algorithm for AP-Ideals of BCI-Algebra

Input(X: BCI-algebra, ∗ : binary operation, I: the subset of X);

Output(“I is aP-ideal of X or not”);

Begin

If I = ϕ then

go to (1.);

EndIf

If 0 ∉ I then

go to (1.);

EndIf

Stop:=false;

i : = 1 ;

While i ≤ | X | and not (Stop) do

j : = 1 ;

While j ≤ | X | and not (Stop) do

k : = 1 ;

While k ≤ | X | and not (Stop) do

If ( x i ∗ z k ) ∗ ( y j ∗ z k ) ∈ I and y j ∈ I then

If x i ∉ I

Stop:=true;

EndIf

EndIf

Endwhile

Endwhile

Endwhile

If Stop then

Output (“I is aP-ideal of X”)

Else

(1.) Output (“I is not aP-ideal of X”)

EndIf

End

Algorithm for n-fold P-Ideals of BCI-Algebra

Input(X: BCI-algebra, ∗ : binary operation, I: a subset of X);

Output(“I is n-fold P-ideal of X or not”);

Begin

If I = ϕ then

go to (1.);

EndIf

If 0 ∉ I then

go to (1.);

EndIf

Stop:=false;

i : = 1 ;

While i ≤ | X | and not (Stop) do

j : = 1 ;

While j ≤ | X | and not (Stop) do

k : = 1 ;

While k ≤ | X | and not (Stop) do

If ( x i ∗ z k ) ∗ ( y j ∗ z k ) ∈ I and y j ∈ I then

If x i ∗ z k n ∉ I

Stop:=true;

EndIf

EndIf

Endwhile

Endwhile

Endwhile

If Stop then

Output (“I is ann-fold P-ideal of X”)

Else

(1.) Output (“I is not ann-fold P-ideal of X”)

EndIf

End

Algorithm for Fuzzy P-Ideals of BCI-Algebra

Input(X: BCI-algebra, ∗ : binary operation, A: the fuzzy subset of X);

Output(“A is a fuzzy P-ideal of X or not”);

Begin

Stop:=false;

i : = 1 ;

While i ≤ | X | and not (Stop) do

If A ( 0 ) < A ( x i ) then

Stop:=true;

EndIf

j : = 1 ;

While j ≤ | X | and not (Stop) do

k : = 1 ;

While k ≤ | X | and not (Stop) do

If A ( x i ∗ z k ) < min ( A ( ( x i ∗ z k ) ∗ ( y j ∗ z k ) ) , A ( y j ) ) then

Stop:=true;

EndIf

Endwhile

Endwhile

Endwhile

If Stop then

Output (“A is not a fuzzyP-ideal of X”)

Else

Output (“A is a fuzzyP-ideal of X”)

EndIf

End

Algorithm for Fuzzy n-fold P-Ideals of BCI-Algebra

Input(X: BCI-algebra, ∗ : binary operation, A: the fuzzy subset of X);

Output(“A is a fuzzy n-fold P-ideal of X or not”);

Begin

Stop:=false;

i : = 1 ;

While i ≤ | X | and not (Stop) do

If A ( 0 ) < A ( x i ) then

Stop:=true;

EndIf

j : = 1 ;

While j ≤ | X | and not (Stop) do

k : = 1 ;

While k ≤ | X | and not (Stop) do

If A ( x i ∗ z k n ) < min ( A ( ( x i ∗ z k ) ∗ ( y j ∗ z k ) ) , A ( y j ) )

Stop:=true;

EndIf

Endwhile

Endwhile

Endwhile

If Stop then

Output (“A is not a fuzzy n-fold P-ideal of X”)

Else

Output (“A is a fuzzy n-fold P-ideal of X”)

EndIf

End

Algorithm for N-Fold weak P-Ideals of BCI-Algebra

Input(X:BCI-algebra, I: subset of X, n ∈ ℕ );

Output(“I is ann-fold weak P-ideal of X or not”);

Begin

If I = ϕ then

go to (1.);

EndIf

If 0 ∉ I then

go to (1.);

EndIf

Stop:=false;

i : = 1 ;

While i ≤ | X | and not (Stop) do

j : = 1 ;

While j ≤ | X | and not (Stop) do

k : = 1 ;

While k ≤ | X | and not (Stop) do

If ( x i ∗ z k ) ∗ ( y j ∗ z k n ) ∈ I and y j ∈ I then

If x i ∉ I

Stop:=true;

EndIf

EndIf

Endwhile

Endwhile

Endwhile

If Stop then

Output (“I is ann-fold weak P-ideal of X”)

Else

(1.) Output (“I is not ann-fold weak P-ideal of X”)

EndIf

End

Algorithm for Fuzzy n-Fold weak P-Ideals of BCI-Algebra

Input(X: BCI-algebra, ∗ : binary operation, A fuzzy subset of X);

Output(“A is a fuzzy n-fold weak P-ideal of X or not”);

Begin

Stop:=false;

i : = 1 ;

While i ≤ | X | and not (Stop) do

If A ( 0 ) < A ( x i ) then

Stop:=true;

EndIf

j : = 1 ;

While j ≤ | X | and not (Stop) do

k : = 1 ;

While k ≤ | X | and not (Stop) do

If A ( x i ) < min ( A ( ( x i ∗ z k ) ∗ ( y j ∗ z k n ) ) , A ( y j ) ) then

Stop=true;

EndIf

Endwhile

Endwhile

Endwhile

If Stop then

Output (“A is not a fuzzy n-foldweakP-ideal of X”)

Else

Output (“A is a fuzzy n-foldweakP-ideal of X”)

EndIf

End

In this paper, we introduce new notions of (fuzzy) n-fold P-ideals, and (fuzzy) n-fold weak P-ideals in BCI-algebras. Then we studied relationships between different type of n-fold P-ideals and investigate several properties of the foldness theory of P-ideals in BCI-algebras. Finally, we construct some algorithms for studying the foldness theory of P-ideals in BCI-algebras.

In our future study of foldness ideals in BCK/BCI algebras, maybe the following topics should be considered:

1) Developing the properties of foldness of implicative ideals of BCK/BCI algebras.

2) Finding useful results on other structures of the foldness theory of ideals of BCK/BCI algebras.

3) Constructing the related logical properties of such structures.

4) One may also apply this concept to study some applications in many fields like decision making, knowledge base systems, medical diagnosis, data analysis and graph theory.

The author declares no conflicts of interest regarding the publication of this paper.

Ahmed, M.A. (2020) Fuzzy Foldness of P-Ideals in BCI-Algebras. Journal of Applied Mathematics and Physics, 8, 2129-2141. https://doi.org/10.4236/jamp.2020.810159