TITLE:
Information Worth of MinMaxEnt Models for Time Series
AUTHORS:
Aladdin Shamilov, Cigdem Giriftinoglu
KEYWORDS:
Maximum Entropy Distribution, Time Series, Estimation of Missing Values, MinMaxEnt Distribution, Information Worth
JOURNAL NAME:
Applied Mathematics,
Vol.6 No.2,
February
3,
2015
ABSTRACT: In this study, by starting from Maximum entropy (MaxEnt) distribution of time series, we introduce a measure that quantifies information worth of a set of autocovariances. The information worth of autocovariences is measured in terms of entropy difference of MaxEnt distributions subject to different autocovariance sets due to the fact that the information discrepancy between two distributions is measured in terms of their entropy difference in MaxEnt modeling. However, MinMaxEnt distributions (models) are obtained on the basis of MaxEnt distributions dependent on parameters according to autocovariances for time series. This distribution is the one which has minimum entropy and maximum information out of all MaxEnt distributions for family of time series constructed by considering one or several values as parameters. Furthermore, it is shown that as the number of autocovariances increases, the entropy of approximating distribution goes on decreasing. In addition, it is proved that information worth of each model defined on the basis of MinMaxEnt modeling about stationary time series is equal to sum of all possible information increments corresponding to each model with respect to preceding model starting with first model in the sequence of models. The fulfillment of obtained results is demonstrated on an example by using a program written in Matlab.