Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
A. Forestiero, C. Pizzuti and G. Spezzano, “A Single Pass Algorithm for Clustering Evolving Data Streams Based on Swarm Intelligence. Data Mining and Knowledge Discovery,” 2011.
has been cited by the following article:
TITLE: LeaDen-Stream: A Leader Density-Based Clustering Algorithm over Evolving Data Stream
AUTHORS: Amineh Amini, Teh Ying Wah
KEYWORDS: Evolving Data Streams; Density-Based Clustering; Micro Cluster; Mini-Micro Cluster
JOURNAL NAME: Journal of Computer and Communications, Vol.1 No.5, November 8, 2013
ABSTRACT: Clustering evolving data streams is important to be performed in a limited time with a reasonable quality. The existing micro clustering based methods do not consider the distribution of data points inside the micro cluster. We propose LeaDen-Stream (Leader Density-based clustering algorithm over evolving data Stream), a density-based clustering algorithm using leader clustering. The algorithm is based on a two-phase clustering. The online phase selects the proper mini-micro or micro-cluster leaders based on the distribution of data points in the micro clusters. Then, the leader centers are sent to the offline phase to form final clusters. In LeaDen-Stream, by carefully choosing between two kinds of micro leaders, we decrease time complexity of the clustering while maintaining the cluster quality. A pruning strategy is also used to filter out real data from noise by introducing dense and sparse mini-micro and micro-cluster leaders. Our performance study over a number of real and synthetic data sets demonstrates the effectiveness and efficiency of our method.
Related Articles:
A Self-Learning Diagnosis Algorithm Based on Data Clustering
Dmitry Tretyakov
DOI: 10.4236/ica.2016.73009 1,817 Downloads 2,476 Views Citations
Pub. Date: August 10, 2016
Knowledge Discovery in Data: A Case Study
Ahmed Hammad, Simaan AbouRizk
DOI: 10.4236/jcc.2014.25001 4,091 Downloads 6,562 Views Citations
Pub. Date: March 10, 2014
A Cluster Based QoS-Aware Service Discovery Architecture Using Swarm Intelligence
E. Christopher Siddarth, K. Seetharaman
DOI: 10.4236/cn.2013.52018 3,939 Downloads 6,061 Views Citations
Pub. Date: May 10, 2013
Knowledge Discovery from Dynamic Data on a Nonlinear System
Chen-Sung Chang
DOI: 10.4236/ojapps.2015.510056 2,270 Downloads 2,585 Views Citations
Pub. Date: October 21, 2015
Network Hot Topic Discovery of Fuzzy Clustering Based on Improved Firefly Algorithm
Zhenpeng Liu, Jing Dong, Bin Zhang, Mengjie He, Jianmin Xu
DOI: 10.4236/jcc.2018.68001 490 Downloads 804 Views Citations
Pub. Date: August 2, 2018