Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
J. Zhang, C. G. Li, H. B. Zhang and J. B. Yu, “Chaos Synchronization Using Single Variable Feedback Based on Backstepping Method,” Chaos Solitons and Fractals, Vol. 21, No. 5, 2004, pp. 1183-1193.http://dx.doi.org/10.1016/j.chaos.2003.12.079
has been cited by the following article:
TITLE: Chaos Synchronization of Uncertain Lorenz System via Single State Variable Feedback
AUTHORS: Fengxiang Chen, Tong Zhang
KEYWORDS: Uncertain Lorenz System; Single State Variable; Chaos Synchronization
JOURNAL NAME: Applied Mathematics, Vol.4 No.11B, November 7, 2013
ABSTRACT: This paper treats the problem of chaos synchronization for uncertain Lorenz system via single state variable information of the master system. By the Lyapunov stability theory and adaptive technique, the derived controller is featured as follows: 1) only single state variable information of the master system is needed; 2) chaos synchronization can also be achieved even if the perturbation is occurred in some parameters of the master chaotic system. Finally, the effectiveness of the proposed controllers is also illustrated by the simulations as well as rigorous mathematical proofs.
Related Articles:
Urban Growth Prediction Modelling Using Fractals and Theory of Chaos
Dimitrios P. Triantakonstantis
DOI: 10.4236/ojce.2012.22013 5,359 Downloads 10,274 Views Citations
Pub. Date: June 22, 2012
Chaos Synchronization in Lorenz System
Ayub Khan, Prempal Singh
DOI: 10.4236/am.2015.611164 3,033 Downloads 3,974 Views Citations
Pub. Date: October 22, 2015
Chaos in a Fractional-Order Single-Machine Infinite-Bus Power System and Its Adaptive Backstepping Control
Zhanhong Liang, Jinfeng Gao
DOI: 10.4236/ijmnta.2016.53013 1,282 Downloads 1,813 Views Citations
Pub. Date: September 27, 2016
Successive Approximation Method for Solving Wu-Zhang Systems of (1 + 1) Dimensional
Abdulghafor M. Al-Rozbayani, Abdulbaset H. Shammar
DOI: 10.4236/oalib.1106601 107 Downloads 248 Views Citations
Pub. Date: August 18, 2020
Generation of Feedback-induced Chaos in a Semiconductor Ring Laser
Xin Zhang, Guohui Yuan, Zhuoran Wang
DOI: 10.4236/opj.2013.32B039 2,911 Downloads 4,034 Views Citations
Pub. Date: July 19, 2013