Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
C.-C. Wang and J.-P. Su, “A New Adaptive Variable Structure Control for Chaotic Synchronization and Secure Communication,” Chaos, Solitons & Fractals, Vol. 20, No. 5, 2004, pp. 967-977.http://dx.doi.org/10.1016/j.chaos.2003.10.026
has been cited by the following article:
TITLE: Chaos Synchronization of Uncertain Lorenz System via Single State Variable Feedback
AUTHORS: Fengxiang Chen, Tong Zhang
KEYWORDS: Uncertain Lorenz System; Single State Variable; Chaos Synchronization
JOURNAL NAME: Applied Mathematics, Vol.4 No.11B, November 7, 2013
ABSTRACT: This paper treats the problem of chaos synchronization for uncertain Lorenz system via single state variable information of the master system. By the Lyapunov stability theory and adaptive technique, the derived controller is featured as follows: 1) only single state variable information of the master system is needed; 2) chaos synchronization can also be achieved even if the perturbation is occurred in some parameters of the master chaotic system. Finally, the effectiveness of the proposed controllers is also illustrated by the simulations as well as rigorous mathematical proofs.
Related Articles:
Impulsive Control for Synchronization of Lorenz Chaotic System
Wenxiang Zhang, Zhanji Gui, Kaihua Wang
DOI: 10.4236/jsea.2012.512B005 2,968 Downloads 4,243 Views Citations
Pub. Date: January 17, 2013
Chaos Synchronization of Uncertain Lorenz System via Single State Variable Feedback
Fengxiang Chen, Tong Zhang
DOI: 10.4236/am.2013.411A2002 3,796 Downloads 5,185 Views Citations
Pub. Date: November 7, 2013
Adaptive Lag Synchronization of Lorenz Chaotic System with Uncertain Parameters
Yanfei Chen, Zhen Jia, Guangming Deng
DOI: 10.4236/am.2012.36083 3,797 Downloads 6,105 Views Citations
Pub. Date: June 21, 2012
Erratum to “The Faraday Isolator, Detailed Balance and the Second Law” [Journal of Applied Mathematics and Physics, Vol. 5, No. 4, April 2017 PP. 889-899]
George S. Levy
DOI: 10.4236/jamp.2017.58127 1,447 Downloads 2,791 Views Citations
Pub. Date: August 25, 2017
Synchronization of Chaotic Systems via Active Disturbance Rejection Control
Fayiz Abu Khadra
DOI: 10.4236/ica.2017.82007 1,253 Downloads 1,782 Views Citations
Pub. Date: May 10, 2017