Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
F. Sorrentino, G. Barlev, A. B. Cohen and E. Ott, “The Stability of Adaptive Synchronization of Chaotic Systems,” Chaos, Vol. 20, No. 1, 2010, Article ID: 013103.http://dx.doi.org/10.1063/1.3279646
has been cited by the following article:
TITLE: Chaos Synchronization of Uncertain Lorenz System via Single State Variable Feedback
AUTHORS: Fengxiang Chen, Tong Zhang
KEYWORDS: Uncertain Lorenz System; Single State Variable; Chaos Synchronization
JOURNAL NAME: Applied Mathematics, Vol.4 No.11B, November 7, 2013
ABSTRACT: This paper treats the problem of chaos synchronization for uncertain Lorenz system via single state variable information of the master system. By the Lyapunov stability theory and adaptive technique, the derived controller is featured as follows: 1) only single state variable information of the master system is needed; 2) chaos synchronization can also be achieved even if the perturbation is occurred in some parameters of the master chaotic system. Finally, the effectiveness of the proposed controllers is also illustrated by the simulations as well as rigorous mathematical proofs.
Related Articles:
Adaptive Lag Synchronization of Lorenz Chaotic System with Uncertain Parameters
Yanfei Chen, Zhen Jia, Guangming Deng
DOI: 10.4236/am.2012.36083 3,797 Downloads 6,105 Views Citations
Pub. Date: June 21, 2012
Relation between Two Operator Inequalities and
Mohammad Ilyas, Reyaz Ahmad, Shadab Ilyas
DOI: 10.4236/apm.2015.52012 2,670 Downloads 3,145 Views Citations
Pub. Date: February 26, 2015
Chaos Synchronization in Discrete-Time Dynamical Systems with Application in Population Dynamics
Tahmineh Azizi, Gabriel Kerr
DOI: 10.4236/jamp.2020.83031 278 Downloads 571 Views Citations
Pub. Date: February 28, 2020
Synchronization of Chaotic Systems via Active Disturbance Rejection Control
Fayiz Abu Khadra
DOI: 10.4236/ica.2017.82007 1,254 Downloads 1,786 Views Citations
Pub. Date: May 10, 2017
Explosive Synchronization in Complex Dynamical Networks Coupled with Chaotic Systems
Juan Chen, Hao Tu, Junchan Zhao
DOI: 10.4236/wjm.2019.911016 253 Downloads 403 Views Citations
Pub. Date: November 8, 2019