Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
G. R. Chen and J. H. LU, “Dynamic Analysis, Control and Synchronization of Lorenz System,” Science Publishing Company, Beijing, 2003.
has been cited by the following article:
TITLE: Controlling Unstable Discrete Chaos and Hyperchaos Systems
AUTHORS: Xin Li, Suping Qian
KEYWORDS: 2-Dimension Discrete Fold System; 3-Dimension Discrete Hyperchaotic System; Lyapunov Stability Theory; Controlling Chaos
JOURNAL NAME: Applied Mathematics, Vol.4 No.11B, November 7, 2013
ABSTRACT: A method is introduced to stabilize unstable discrete systems, which does not require any adjustable control parameters of the system. 2-dimension discrete Fold system and 3-dimension discrete hyperchaotic system are stabilized to fixed points respectively. Numerical simulations are then provided to show the effectiveness and feasibility of the proposed chaos and hyperchaos controlling scheme.
Related Articles:
Chaos Synchronization in Lorenz System
Ayub Khan, Prempal Singh
DOI: 10.4236/am.2015.611164 3,030 Downloads 3,970 Views Citations
Pub. Date: October 22, 2015
Chaos Anti-Synchronization between Chen System and Genesio System
Xianyong Wu, Hao Wu, Zhengrong Yan, Yuehua Huang
DOI: 10.4236/oalib.1102856 732 Downloads 1,140 Views Citations
Pub. Date: July 14, 2016
Adaptive Lag Synchronization of Lorenz Chaotic System with Uncertain Parameters
Yanfei Chen, Zhen Jia, Guangming Deng
DOI: 10.4236/am.2012.36083 3,797 Downloads 6,105 Views Citations
Pub. Date: June 21, 2012
Chaos Synchronization of Uncertain Lorenz System via Single State Variable Feedback
Fengxiang Chen, Tong Zhang
DOI: 10.4236/am.2013.411A2002 3,796 Downloads 5,185 Views Citations
Pub. Date: November 7, 2013
Optimal Control and Bifurcation Issues for Lorenz-Rössler Model
Saba M. Alwan, Abdo M. Al-Mahdi, Omalsad H. Odhah
DOI: 10.4236/ojop.2020.93006 90 Downloads 256 Views Citations
Pub. Date: August 24, 2020