SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


A. M. Shanmugharaj and A. K. Bhowmick, (2003) Dy-namic mechanical properties of styrene-butadiene rubber vulcanizate filled with electron beam modified surface- treated dual-phase filler. Journal of Applied Polymer Science, 88, 2992-3004.

has been cited by the following article:

  • TITLE: Preparation and properties of cast polyurethane elastomers with molecularly uniform hard segments based on 2,4-toluene diisocyanate and 3,5-dimethyl-thioltoluenediamine

    AUTHORS: Xiao-Dong Chen, Nan-Qiao Zhou, Hai Zhang

    KEYWORDS: Soft Segment; Structure; Cast Polyurethane Elastomer; Properties

    JOURNAL NAME: Journal of Biomedical Science and Engineering, Vol.2 No.4, August 17, 2009

    ABSTRACT: A series of three cast polyurethane elastomers were prepared from 2,4-toluene diisocyanate (TDI) and 3,5-dimethyl-thioltoluenediamine (D MTDA) chain extender, with polyethylene adi-pate (PEA), polyoxytetramethylene glycol (PTMG) and polycaprolactone (PCL) soft seg-ments. The polyol molecular weights em-ployed was 2000g/mol. The polyurethane elastomers were characterized by an elec-tronmechanical universal testing machine, an Akron abrasion loss tester, a LX-A Shore du-rometer, a rebound resilience equipment and a Dynamic- Mechanical analyzer. In addition, fractured surface of the polyurethane elas-tomers was investigated by a field emission scanning electron microscopy (SEM). The test results showed the PCL based elastomer ex-hibits the excellent tear and stress-strain properties that polyester based elastomers offer, while retaining superior compression set and resilience similar to polyether based elas-tomers. The static and dynamic properties of the PCL based elastomer were more suitable for dynamic applications. The SEM micro-graphs of all polyurethane samples indicated the existing of the microphase separation structure. Particles of the dispersed phase formed by the hard phase and crystalline part of the soft phase grows bigger with the in-creasing crystallinity of the soft segments. The hard domains are irregular shapes and with the sizes of a few micrometers.