Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
F. L. Li, X. Y. Hu and L. Zhang, “The Generalized Reflexive Solution for a Class of Matrix Equations (AX = B, XC = D),” Acta Mathematica Scientia Series B, Vol. 1, No. 28, 2008, pp. 185-193.
has been cited by the following article:
TITLE: Least Squares Symmetrizable Solutions for a Class of Matrix Equations
AUTHORS: Fanliang Li
KEYWORDS: Matrix Equations; Matrix Row Stacking; Topological Isomorphism; Least Squares Solution; Optimal Approximation
JOURNAL NAME: Applied Mathematics, Vol.4 No.5, May 13, 2013
ABSTRACT: In this paper, we discuss least squares symmetrizable solutions of matrix equations (AX = B, XC = D) and its optimal approximation solution. With the matrix row stacking, Kronecker product and special relations between two linear subspaces are topological isomorphism, and we derive the general solutions of least squares problem. With the invariance of the Frobenius norm under orthogonal transformations, we obtain the unique solution of optimal approximation problem. In addition, we present an algorithm and numerical experiment to obtain the optimal approximation solution.
Related Articles:
Homotopy Analysis Method for Equations of the Type Δ2=b(x,y) and Δ2u=b(x,y,u)
Selcuk Yildirim
DOI: 10.4236/jamp.2015.34049 3,093 Downloads 3,889 Views Citations
Pub. Date: April 20, 2015
Generalized Löb’s Theorem. Strong Reflection Principles and Large Cardinal Axioms
J. Foukzon, E. R. Men’kova
DOI: 10.4236/apm.2013.33053 2,994 Downloads 5,112 Views Citations
Pub. Date: May 17, 2013
Exponential B-Spline Solution of Convection-Diffusion Equations
Reza Mohammadi
DOI: 10.4236/am.2013.46129 5,697 Downloads 8,330 Views Citations
Pub. Date: June 17, 2013
Lévy Flights, 1/f Noise and Self Organized Criticality
Oliver López Corona, Pablo Padilla, Oscar Escolero, Alejandro Frank, Ruben Fossion
DOI: 10.4236/jmp.2013.43046 4,380 Downloads 7,583 Views Citations
Pub. Date: March 8, 2013
Dykstra’s Algorithm for the Optimal Approximate Symmetric Positive Semidefinite Solution of a Class of Matrix Equations
Chunmei Li, Xuefeng Duan, Zhuling Jiang
DOI: 10.4236/alamt.2016.61001 2,541 Downloads 3,019 Views Citations
Pub. Date: March 7, 2016