Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Y. Qiu and A. Wang, “Least Squares Solutions to the Equations AX = B, XC = D with Some Constraints,” Applied Mathematics and Computation, Vol. 204, No. 2, 2008, pp. 872-880. doi:10.1016/j.amc.2008.07.035
has been cited by the following article:
TITLE: Least Squares Symmetrizable Solutions for a Class of Matrix Equations
AUTHORS: Fanliang Li
KEYWORDS: Matrix Equations; Matrix Row Stacking; Topological Isomorphism; Least Squares Solution; Optimal Approximation
JOURNAL NAME: Applied Mathematics, Vol.4 No.5, May 13, 2013
ABSTRACT: In this paper, we discuss least squares symmetrizable solutions of matrix equations (AX = B, XC = D) and its optimal approximation solution. With the matrix row stacking, Kronecker product and special relations between two linear subspaces are topological isomorphism, and we derive the general solutions of least squares problem. With the invariance of the Frobenius norm under orthogonal transformations, we obtain the unique solution of optimal approximation problem. In addition, we present an algorithm and numerical experiment to obtain the optimal approximation solution.
Related Articles:
Erratum to “The Faraday Isolator, Detailed Balance and the Second Law” [Journal of Applied Mathematics and Physics, Vol. 5, No. 4, April 2017 PP. 889-899]
George S. Levy
DOI: 10.4236/jamp.2017.58127 1,447 Downloads 2,789 Views Citations
Pub. Date: August 25, 2017
On Least Squares Solutions of Matrix Equation MZN=S
Yuping Zhang, Changzhou Dong, Jianmin Song
DOI: 10.4236/alamt.2013.34009 3,513 Downloads 7,450 Views Citations
Pub. Date: December 6, 2013
Homotopy Analysis Method for Equations of the Type Δ2=b(x,y) and Δ2u=b(x,y,u)
Selcuk Yildirim
DOI: 10.4236/jamp.2015.34049 3,093 Downloads 3,889 Views Citations
Pub. Date: April 20, 2015
On the Computation of Extinction Time for Some Nonlinear Parabolic Equations
Kossadoum Ngarmadji, Siniki Ndeuzoumbet, Hilaire Nkounkou, Benjamin Mampassi
DOI: 10.4236/am.2015.65071 2,429 Downloads 2,852 Views Citations
Pub. Date: May 7, 2015
Erratum to “Valid Geometric Solutions for Indentations with Algebraic Calculations”, [Advances in Pure Mathematics, Vol. 10 (2020) 322-336]
Gerd Kaupp
DOI: 10.4236/apm.2020.109034 64 Downloads 174 Views Citations
Pub. Date: September 29, 2020