Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
L. Peng and Y. Huang, “Survival Analysis with Quantile Regression Models,” Journal of the American Statistical Association, Vol. 103, No. 482, 2008, pp. 637-649. doi:10.1198/016214508000000355
has been cited by the following article:
TITLE: Composite Quantile Regression for Nonparametric Model with Random Censored Data
AUTHORS: Rong Jiang, Weimin Qian
KEYWORDS: Kaplan-Meier Estimator; Censored Data; Composite Quantile Regression; Kernel Estimator; Nonparametric Model
JOURNAL NAME: Open Journal of Statistics, Vol.3 No.2, April 18, 2013
ABSTRACT: The composite quantile regression should provide estimation efficiency gain over a single quantile regression. In this paper, we extend composite quantile regression to nonparametric model with random censored data. The asymptotic normality of the proposed estimator is established. The proposed methods are applied to the lung cancer data. Extensive simulations are reported, showing that the proposed method works well in practical settings.
Related Articles:
Erratum to “The Faraday Isolator, Detailed Balance and the Second Law” [Journal of Applied Mathematics and Physics, Vol. 5, No. 4, April 2017 PP. 889-899]
George S. Levy
DOI: 10.4236/jamp.2017.58127 1,449 Downloads 2,795 Views Citations
Pub. Date: August 25, 2017
A Bayesian Quantile Regression Analysis of Potential Risk Factors for Violent Crimes in USA
Ming Wang, Lijun Zhang
DOI: 10.4236/ojs.2012.25068 5,150 Downloads 8,106 Views Citations
Pub. Date: December 19, 2012
Bayesian Regularized Quantile Regression Analysis Based on Asymmetric Laplace Distribution
Qiaoqiao Tang, Haomin Zhang, Shifeng Gong
DOI: 10.4236/jamp.2020.81006 233 Downloads 389 Views Citations
Pub. Date: January 6, 2020
Erratum to “Simple Method for Evaluating Singular Integrals” [American Journal of Computational Mathematics, Volume 7, Number 4, December 2017 PP. 444-450]
Nhan T. Tran
DOI: 10.4236/ajcm.2019.93015 379 Downloads 672 Views Citations
Pub. Date: September 27, 2019
Penalized Flexible Bayesian Quantile Regression
Ali Alkenani, Rahim Alhamzawi, Keming Yu
DOI: 10.4236/am.2012.312A296 4,333 Downloads 7,338 Views Citations
Pub. Date: December 31, 2012