SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


J. Kiviaho, T. Hanaoka, Y. Kubotaand and Y. Sugi, “Heterogeneous Palladium Catalysts for Heck Reaction,” Journal of Molecular Catalysis A: Chemical, Vol. 101, No. 1, 1995, pp. 25-31.

has been cited by the following article:

  • TITLE: Symmetrical Palladium (II) N,N,O,O-Schiff Base Complex: Efficient Catalyst for Heck and Suzuki Reactions

    AUTHORS: Wan Nazihah Wan Ibrahim, Mustaffa Shamsuddin

    KEYWORDS: Palladium (II) Schiff Base Complex; Heck Reaction; Suzuki Reaction

    JOURNAL NAME: Crystal Structure Theory and Applications, Vol.1 No.3, December 20, 2012

    ABSTRACT: Palladium is arguably the most versatile and most widely applied catalytic metal in the field of fine chemicals due to its high selectivity and activity. Palladium catalyst offers an abundance of possibilities of carbon-carbon bond formation in organic synthesis. In this research, three different Schiff base ligands have been prepared by condensation reaction between appropriate aldehyde or ketone with amine namely 2,2-dimethyl-1,3-propanediamine in the molar ratio of 2:1. The corresponding palladium (II) Schiff base complexes were prepared through the reaction between the Schiff base ligand with palladium (II) acetate in a molar ratio 1:1. FTIR, 1H-NMR and 13C-NMR spectroscopic data revealed that the ligands are N,N,O,O-tetradentate coordinated to the Pd atom through both the azomethine N atoms and phenolic O atoms. From X-ray Crystallographic analysis, it showed that the complex exists as square planar geometry. The synthesized palladium (II) Schiff base complexes were then subjected in catalytic Heck and Suzuki reaction of iodobenzene.