SCIRP Mobile Website

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


C. Hiebenthal, E. E. Philipp, A. Eisenhauer and M. Wahl, “Interactive Effects of Temperature and Salinity on Shell Formation and General Condition in Baltic Sea Mytilus edulis and Arctica islandica,” Aquatic Biology, Vol. 14, 2012, pp. 289-298. doi:10.3354/ab00405

has been cited by the following article:

  • TITLE: Effect of Salinity on Growth of Mussels, Mytilus edulis, with Special Reference to Great Belt (Denmark)

    AUTHORS: Hans Ulrik Riisgård, Line Bøttiger, Daniel Pleissner

    KEYWORDS: Mussels; Mytilus edulis; Salinity Effects; Growth Rates; Condition Index; Doubling Time

    JOURNAL NAME: Open Journal of Marine Science, Vol.2 No.4, October 31, 2012

    ABSTRACT: The effects of salinities between 10 and 30 psu on the growth of blue mussels, Mytilus edulis, were studied in laboratory feeding experiments and compared to the growth of mussels suspended in net-bags in the brackish water Great Belt, Denmark. In the laboratory, 3 series of growth experiments were conducted: in Series #1, groups of mussels were exposed to 10, 15, 25 and 30 psu, in Series #2, two groups of mussels were exposed to 10 and 30 psu, respectively, for 15 days (first period) where upon the mussels were exposed to the reversed salinities for another 15 days (second period). In Series #3, two groups of mussels were initially exposed to 15 and 25 psu for 22 days whereupon the mussel groups were exposed to the reversed salinities for another 17 days. In the laboratory experiments there was a tendency towards reduced growth with decreasing salinity, reflected as reduced shell growth rate and decreasing weight specific growth rate with falling salinity. The shell growth rate was relatively low in the first feeding period compared to the second period, and mussels that were initially exposed to 10 psu, where the growth was low, exhibited fast growth when subsequently exposed to 30 psu, and reversed when 30 psu mussels were exposed to 10 psu. The study showed that mussels are able to adjust growth at changing salinities, and the observed effect of salinity could partly be explained by a temporary shell valve closure after a sudden change in salinity. The specific growth rate of mussels measured in laboratory experiments at salinities between 15 to 25 psu (4.2% to 4.8% d–1) were comparable to the growth of mussels in the field experiment (3.2% to 4.0% d–1) where the salinity varied between 24 and 13 psu during the growth period.