SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


A. Mainwaring and D. Culler, “Wireless Sensor Networks for Habitat Monitoring,” Proceedings of 1st ACM Inter- national Workshop on Wireless Sensor Networks and Applications, Atlanta, 2002, pp. 88-97.

has been cited by the following article:

  • TITLE: An Application-Oriented Network Model for Wireless Sensor Networks

    AUTHORS: Xiaoliang Cheng, Zhidong Deng, Zhen Huang

    KEYWORDS: Wireless Sensor Networks, Personal Area Network (PAN), Network Model, Throughput Analysis

    JOURNAL NAME: Wireless Sensor Network, Vol.2 No.10, October 27, 2010

    ABSTRACT: Wireless sensor networks (WSNs) are energy-constrained networks. The residual energy real-time monitoring (RERM) is very important for WSNs. Moreover, network model is an important foundation of RERM research at personal area network (PAN) level. Because RERM is inherently application-oriented, the network model adopted should also be application-oriented. However, many factors of WSNs applications such as link selected probability and ACK mechanism etc. were neglected by current network models. These factors can introduce obvious influence on throughput of WSNs. Then the energy consumption of nodes will be influenced greatly. So these models cannot characterize many real properties of WSNs, and the result of RERM is not consistent with the real-world situation. In this study, these factors neglected by other researchers are taken into account. Furthermore, an application-oriented general network model (AGNM) for RERM is proposed. Based on the AGNM, the dynamic characteristics of WSNs are simulated. The experimental results show that AGNM can approximately characterize the real situation of WSNs. Therefore, the AGNM provides a good foundation for RERM research.