Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
L. Feng and V. Linetsky, “Pricing Discretely Monitored Barrier Options and Defaultable Bonds in Lévy Process Models: A Fast Hilbert Transform Approach,” Mathematical Finance, Vol. 18, No. 3, 2008, pp. 337-384. doi:10.1111/j.1467-9965.2008.00338.x
has been cited by the following article:
TITLE: An Accurate FFT-Based Algorithm for Bermudan Barrier Option Pricing
AUTHORS: Deng Ding, Zuoqiu Weng, Jingya Zhao
KEYWORDS: Fast Fourier Transform (FFT); Bermudan Barrier Option; CONV Method.
JOURNAL NAME: Intelligent Information Management, Vol.4 No.3, May 25, 2012
ABSTRACT: An efficient and accurate numerical method, which is called the CONV method, was proposed by Lord et al in [1] to price Bermudan options. In this paper, this method is applied to price Bermudan barrier options in which the monitored dates may be many times more than the exercise dates. The corresponding algorithm is presented to practical option pricing. Numerical experiments show that this algorithm works very well for different exponential Lévy asset models.
Related Articles:
Valuation of European Call Options via the Fast Fourier Transform and the Improved Mellin Transform
Sunday Emmanuel Fadugba, Chuma Raphael Nwozo
DOI: 10.4236/jmf.2016.62028 2,826 Downloads 3,829 Views Citations
Pub. Date: May 31, 2016
Pricing Options in Jump Diffusion Models Using Mellin Transforms
Robert Frontczak
DOI: 10.4236/jmf.2013.33037 6,549 Downloads 9,703 Views Citations
Pub. Date: August 15, 2013
The Calibration of Some Stochastic Volatility Models Used in Mathematical Finance
Lorella Fatone, Francesca Mariani, Maria Cristina Recchioni, Francesco Zirilli
DOI: 10.4236/ojapps.2014.42004 5,759 Downloads 8,337 Views Citations
Pub. Date: February 20, 2014
Random Timestepping Algorithm with Exponential Distribution for Pricing Various Structures of One-Sided Barrier Options
Hasan Alzubaidi
DOI: 10.4236/ajcm.2017.73020 682 Downloads 1,211 Views Citations
Pub. Date: August 3, 2017
Pricing American Options Using Transition Probabilities: A Dynamical Systems Approach
Rocio Elizondo, Pablo Padilla, Mogens Bladt
DOI: 10.4236/ojs.2015.56056 3,127 Downloads 3,757 Views Citations
Pub. Date: October 20, 2015