Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
D. Ding and S. C. U, “An Accurate and Stable FFT- Based Method for Pricing Options under Exp-Levy Processes,” In: J. W. Z. Lu, et al., Eds., The Proceedings of ISCM II- EPMSC XII, American Institute of Physics, New York, 2010, pp. 741-746.
has been cited by the following article:
TITLE: An Accurate FFT-Based Algorithm for Bermudan Barrier Option Pricing
AUTHORS: Deng Ding, Zuoqiu Weng, Jingya Zhao
KEYWORDS: Fast Fourier Transform (FFT); Bermudan Barrier Option; CONV Method.
JOURNAL NAME: Intelligent Information Management, Vol.4 No.3, May 25, 2012
ABSTRACT: An efficient and accurate numerical method, which is called the CONV method, was proposed by Lord et al in [1] to price Bermudan options. In this paper, this method is applied to price Bermudan barrier options in which the monitored dates may be many times more than the exercise dates. The corresponding algorithm is presented to practical option pricing. Numerical experiments show that this algorithm works very well for different exponential Lévy asset models.
Related Articles:
A New Binomial Tree Method for European Options under the Jump Diffusion Model
Lingkang Zhu, Xiu Kan, Huisheng Shu, Zifeng Wang
DOI: 10.4236/jamp.2019.712211 348 Downloads 461 Views Citations
Pub. Date: December 9, 2019
Efficient Pricing of European-Style Options under Heston’s Stochastic Volatility Model
Oleksandr Zhylyevskyy
DOI: 10.4236/tel.2012.21003 5,322 Downloads 11,069 Views Citations
Pub. Date: February 23, 2012
Pricing American Options Using Transition Probabilities: A Dynamical Systems Approach
Rocio Elizondo, Pablo Padilla, Mogens Bladt
DOI: 10.4236/ojs.2015.56056 3,127 Downloads 3,758 Views Citations
Pub. Date: October 20, 2015
Fast Fourier Transform Based Computation of American Options under Economic Recession Induced Volatility Uncertainty
Philip Ajibola Bankole, Olabisi O. Ugbebor
DOI: 10.4236/jmf.2019.93026 334 Downloads 619 Views Citations
Pub. Date: August 22, 2019
On Horn Matrix Function H2(A,A′,B,B′;C;z,w) of Two Complex Variables under Differential Operator
Mohamed Saleh Metwally, Mahmoud Tawfik Mohamed, Ayman Shehata
DOI: 10.4236/alamt.2018.82009 616 Downloads 1,188 Views Citations
Pub. Date: June 25, 2018