Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


M. Nishiyama, S. Fujioka, Y. Kubo, T. Sato and S. Sugimoto, “Performance Studies of Nonlinear Filtering Methods in INS/GPS In-Motion Alignment,” Proceedings of the Institute of Navigation, ION GNSS 2006, Fort Worth, TX, 2006, pp. 2733-2742.

has been cited by the following article:

  • TITLE: Particle Filter Data Fusion Enhancements for MEMS-IMU/GPS

    AUTHORS: Yafei Ren, Xizhen Ke

    KEYWORDS: Micro-Electro-Mechanical-System, Particle Filter, Data Fusion, Extended Kalman Filtering

    JOURNAL NAME: Intelligent Information Management, Vol.2 No.7, July 22, 2010

    ABSTRACT: This research aims at enhancing the accuracy of navigation systems by integrating GPS and Mi-cro-Electro-Mechanical-System (MEMS) based inertial measurement units (IMU). Because of the conditions re-quired by the large number of restrictions on empirical data, a conventional Extended Kalman Filtering (EKF) is limited to apply in navigation systems by integrating MEMS-IMU/GPS. In response to non-linear non-Gaussian dynamic models of the inertial sensors, the methods rely on a particle cloud representation of the filtering distribution which evolves through time using importance sampling and resampling ideas. Then Particle Filtering (PF) can be used to data fusion of the inertial information and real-time updates from the GPS location and speed of information accurately. The experiments show that PF as opposed to EKF is more effective in raising MEMS-IMU/GPS navigation system’s data integration accuracy.