SCIRP Mobile Website

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


A. Massias, D. Diamantis, E. Mastorakos, D. A. Goussis, “An Algorithm for the Construction of Global Reduced Mechanisms with Csp Data,” Combustion and Flame, Vol. 117, No. 1, 1999, pp. 685-708. doi:10.1016/S0010-2180(98)00132-1

has been cited by the following article:

  • TITLE: Reduced Detailed Mechanism for Methane Combustion

    AUTHORS: Abdelouahad Ait Msaad, Abdeltif Belcadi, Mustapha Mahdaoui, Elhoussin Aaffad, M’hamed Mouqallid

    KEYWORDS: Detailed Mechanism; Reduced Mechanism; PCAF Method; CSP Algorithm

    JOURNAL NAME: Energy and Power Engineering, Vol.4 No.1, January 17, 2012

    ABSTRACT: Simulated results from a detailed elementary reaction mechanism for methane-containing species in flames consisting of nitrogen (NOx), C1 or C2 fuels are presented, and compared with reduced mechanism; this mechanism have been constructed with the analysis of the rate sensitivity matrix f (PCAF method), and the computational singular perturbation (CSP). The analysis was performed on solutions of unstrained adiabatic premixed flames with detailed chemical kinetics described by GRI 3.0 for methane including NOx formation. A 9-step reduced mechanism for methane has been constructed which reproduces accurately laminar burning velocities, flame temperatures and mass fraction distributions of major species for the whole flammability range. Many steady-state species are also predicted satisfactorily. This mechanism is especially for lean flames. This mechanism is accurate for a wide range of the equivalence ratio (1, 0.9, 0.8, and 0.7) and for pressures as high as 40 atm to 60 atm. For both fuels, the CSP algorithm automatically pointed to the same steady-state species as those identified by laborious analysis or intuition in the literature and the global reactions were similar to well established previous methane-reduced mechanisms. This implies that the method is very well suited for the study of complex mechanisms for heavy hydrocarbon combustion.