SCIRP Mobile Website

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Feinberg, K., Eshed-Eisenbach, Y., Frechter, S., Amor, V., Salomon, D., Sabanay, H., Dupree, J.L., Grumet, M., Brophy, P.J., Shrager, P. and Peles, E. (2010) A Glial Signal Consisting of Gliomedin and NrCAM Clusters Axonal Na+ Channels during the Formation of Nodes of Ranvier. Neuron, 65, 490-502.
https://doi.org/10.1016/j.neuron.2010.02.004

has been cited by the following article:

  • TITLE: Cryo-ET Workflow for Understanding Ion Channels Localization on the Nodes of Ranvier

    AUTHORS: Jiaxuan Wang

    KEYWORDS: Cryo-ET, Ion Channels Localization, The Nodes of Ranvier

    JOURNAL NAME: Journal of Biosciences and Medicines, Vol.8 No.2, February 7, 2020

    ABSTRACT: The localization of ion channels on myelinated axon is closely related with the saltatory conduction of action potential (AP). Abnormal changes in these channels contribute to multiple mental diseases. The development of cryo-Electron Tomography (cryo-ET) has provided a promising prospect for peering into ion channels in their native environment at high resolution. Previous achievements are reviewed here on cryo-ET. Accordingly, a cryo-ET workflow is designed for understanding ion channels localization in myelinated axon, especially nodes of Ranvier, which are significant for the saltatory conduction involved in the propagation of high-speed AP. The workflow is divided into six parts: the preparation of neural cultures with myelin, antibodies and immunofluorescence staining, frozen-hydrated sample preparation, cryo-ET imaging, cryo-correlative light and electron microscopy (cryo-CLEM) imaging, three-dimensional (3D) reconstruction and refinement. The purpose is to conceive a possible solution for the problems related to ion channel compounds including localization, conformation dynamics, accessory structures of ion channel and transient regulatory factors, and thus provide insights into treating neurological diseases caused by abnormal ion channels activity.