SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Wu, J., Mehta, N.B. and Zhang, J. (2005) Flexible Lognormal Sum Approximation Method. 2005 IEEE Global Telecommunications Conference, St. Louis, MO, 28 November-2 December 2005, 3413-3417.

has been cited by the following article:

  • TITLE: Crowdsourced Sampling of a Composite Random Variable: Analysis, Simulation, and Experimental Test

    AUTHORS: M. P. Silverman

    KEYWORDS: Crowdsourcing, Computer Modeling of Crowds, Monte Carlo Simulation, Large-Scale Sampling, Log-Normal Random Variable, Log-Normal Distribution

    JOURNAL NAME: Open Journal of Statistics, Vol.9 No.4, August 15, 2019

    ABSTRACT: A composite random variable is a product (or sum of products) of statistically distributed quantities. Such a variable can represent the solution to a multi-factor quantitative problem submitted to a large, diverse, independent, anonymous group of non-expert respondents (the “crowd”). The objective of this research is to examine the statistical distribution of solutions from a large crowd to a quantitative problem involving image analysis and object counting. Theoretical analysis by the author, covering a range of conditions and types of factor variables, predicts that composite random variables are distributed log-normally to an excellent approximation. If the factors in a problem are themselves distributed log-normally, then their product is rigorously log-normal. A crowdsourcing experiment devised by the author and implemented with the assistance of a BBC (British Broadcasting Corporation) television show, yielded a sample of approximately 2000 responses consistent with a log-normal distribution. The sample mean was within ~12% of the true count. However, a Monte Carlo simulation (MCS) of the experiment, employing either normal or log-normal random variables as factors to model the processes by which a crowd of 1 million might arrive at their estimates, resulted in a visually perfect log-normal distribution with a mean response within ~5% of the true count. The results of this research suggest that a well-modeled MCS, by simulating a sample of responses from a large, rational, and incentivized crowd, can provide a more accurate solution to a quantitative problem than might be attainable by direct sampling of a smaller crowd or an uninformed crowd, irrespective of size, that guesses randomly.