Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Fatunla, S.O. (1987) An Implicit Two-Point Numerical Integration Formula for Linear and Non-Linear Stiff System of ODEs. Mathematics of Computation, 32, 1-11. https://doi.org/10.1090/S0025-5718-1978-0474830-0
has been cited by the following article:
TITLE: Solution of Some Second Order Ordinary Differential Equations Using a Derived Algorithm
AUTHORS: R. B. Ogunrinde, J. O. Olubunmi
KEYWORDS: Numerical Scheme, Ordinary Differential Equation, Scheme Development
JOURNAL NAME: Applied Mathematics, Vol.10 No.5, May 21, 2019
ABSTRACT: We emphasized explicitly on the derivation and implementation of a new numerical algorithm scheme which gave stable results that show the applicability of the method. In this paper, we aimed to solve some second order initial value problems of ordinary differential equations and compare the results with the theoretical solution. Using this method to solve some initial value problems of second order ordinary differential equations, we discovered that the results compared favorably with the theoretical solution which led to the conclusion that the new numerical algorithm scheme derived in the research is approximately correct and can be prescribed for any related ordinary differential equations.
Related Articles:
High Accuracy Arithmetic Average Discretization for Non-Linear Two Point Boundary Value Problems with a Source Function in Integral Form
Ranjan K. Mohanty, Deepika Dhall
DOI: 10.4236/am.2011.210173 3,879 Downloads 6,451 Views Citations
Pub. Date: October 11, 2011
Analytical Solutions of Some Two-Point Non-Linear Elliptic Boundary Value Problems
Vembu Ananthaswamy, Lakshmanan Rajendran
DOI: 10.4236/am.2012.39154 4,654 Downloads 7,986 Views Citations
Pub. Date: September 27, 2012
Set-Valued Non-Linear Random Implicit Quasivariational Inclusions
Salahuddin  , Mohammad Kalimuddin Ahmad
DOI: 10.4236/am.2013.43063 2,648 Downloads 4,940 Views Citations
Pub. Date: March 21, 2013
Laplace Decomposition Method for the System of Non Linear PDEs
S. S. Handibag
DOI: 10.4236/oalib.1105954 126 Downloads 246 Views Citations
Pub. Date: December 26, 2019
Transient Stability Improvement of Power System Using Non-Linear Controllers
Rekha Chaudhary, Arun Kumar Singh
DOI: 10.4236/epe.2014.61002 5,243 Downloads 7,641 Views Citations
Pub. Date: January 22, 2014