Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Hassaneen, K.S., Abo-Elsebaa, H.M., Sultan, E.A. and Mansour, H.M.M. (2011) Nuclear Binding Energy and Symmetry Energy of Nuclear Matter with Modern Nucleon-Nucleon Potentials. Annals of Physics, 326, 566-577.
https://doi.org/10.1016/j.aop.2010.11.010

has been cited by the following article:

  • TITLE: Temperature Effects on the Equation of State and Symmetry Energy: A Critique

    AUTHORS: Hesham Mansour

    KEYWORDS: Nuclear Matter, Equation of State, Neutron Matter

    JOURNAL NAME: Open Journal of Microphysics, Vol.8 No.4, November 29, 2018

    ABSTRACT: The investigation of strongly interacting systems ranges from matter inside atomic nuclei to matter under extreme conditions in astrophysics. These systems require the introduction of nuclear forces and a systematic many-body approach to solve the strong interaction particles. Understanding the behavior of infinite nuclear matter provides a path to predict the properties of neutron stars and gives insights to astrophysical phenomena. Three-nucleon forces have to be considered when studying nuclear systems, because their impact is necessary to reproduce properties of nuclei and to correctly obtain the neutron drip line. Moreover, they are needed to predict the empirical saturation properties of infinite nuclear matter. The self-consistent Green’s Function approach paves the way for an improved Ab initio analysis of nuclear matter, thereby providing the basis for the equation of state of neutron stars and supernova explosions.