SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Virmani, S., Adrian, E.C., Imhof, K. and Muhherjee, S. (1989) Implementation of a Lagrangian Based Unit Commitment Problem. IEEE Transactions on Power Systems, 4, 1373-1380.

has been cited by the following article:

  • TITLE: A Hybrid Unit Commitment Approach Incorporating Modified Priority List with Charged System Search Methods

    AUTHORS: Yuan-Kang Wu, Chih-Cheng Huang, Chun-Liang Lin, Shih-Ming Chang

    KEYWORDS: A Hybrid Unit Commitment Approach Incorporating Modified Priority List with Charged System Search Methods

    JOURNAL NAME: Smart Grid and Renewable Energy, Vol.8 No.6, June 26, 2017

    ABSTRACT: This paper presents a new hybrid approach that combines Modified Priority List (MPL) with Charged System Search (CSS), termed MPL-CSS, to solve one of the most crucial power system’s operational optimization problems, known as unit commitment (UC) scheduling. The UC scheduling problem is a mixed-integer nonlinear problem, highly-dimensional and extremely constrained. Existing meta-heuristic UC solution methods have the problems of stopping at a local optimum and slow convergence when applied to large-scale, heavily-constrained UC applications. In the first step of the proposed method, initial hourly optimum solutions of UC are obtained by Modified Priority List (MPL); however, the obtained UC solution may still be possible to be further improved. Therefore, in the second step, the CSS is utilized to achieve higher quality solutions. The UC is formulated as mixed integer linear programming to ensure the tractability of the results. The proposed method is successfully applied to a popular test system up to 100 units generators for both 24-hr and 168-hr system. Computational results show that both solution cost and execution time are superior to those of published methods.